These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 30015380)

  • 1. Functional cerebral asymmetry analyses reveal how the control system implements its flexibility.
    Chen Z; Zhao X; Fan J; Chen A
    Hum Brain Mapp; 2018 Dec; 39(12):4678-4688. PubMed ID: 30015380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcranial direct current stimulation (tDCS) over the right dorsolateral prefrontal cortex affects stimulus conflict but not response conflict.
    Zmigrod S; Zmigrod L; Hommel B
    Neuroscience; 2016 May; 322():320-5. PubMed ID: 26924018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fNIRS investigation of switching and inhibition during the modified Stroop task in younger and older adults.
    Laguë-Beauvais M; Brunet J; Gagnon L; Lesage F; Bherer L
    Neuroimage; 2013 Jan; 64():485-95. PubMed ID: 23000257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lateralized contribution of prefrontal cortex in controlling task-irrelevant information during verbal and spatial working memory tasks: rTMS evidence.
    Sandrini M; Rossini PM; Miniussi C
    Neuropsychologia; 2008; 46(7):2056-63. PubMed ID: 18336847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct effects of trial-driven and task Set-related control in primary visual cortex.
    Griffis JC; Elkhetali AS; Vaden RJ; Visscher KM
    Neuroimage; 2015 Oct; 120():285-297. PubMed ID: 26163806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Turning down the heat: Neural mechanisms of cognitive control for inhibiting task-irrelevant emotional information during adolescence.
    Banich MT; Smolker HR; Snyder HR; Lewis-Peacock JA; Godinez DA; Wager TD; Hankin BL
    Neuropsychologia; 2019 Mar; 125():93-108. PubMed ID: 30615898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Word and position interference in stroop tasks: a behavioral and fMRI study.
    Zoccatelli G; Beltramello A; Alessandrini F; Pizzini FB; Tassinari G
    Exp Brain Res; 2010 Nov; 207(1-2):139-47. PubMed ID: 20924569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Important Role of the Right Dorsolateral Prefrontal Cortex in Conflict Adaptation: A Combined Voxel-Based Morphometry and Continuous Theta Burst Stimulation Study.
    Xu P; Lin F; Alimu G; Zhang J; Jin Z; Li L
    J Cogn Neurosci; 2024 Jun; 36(6):1172-1183. PubMed ID: 38579250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Representational Similarity Analysis of Cognitive Control during Color-Word Stroop.
    Freund MC; Bugg JM; Braver TS
    J Neurosci; 2021 Sep; 41(35):7388-7402. PubMed ID: 34162756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of rTMS over the left dorsolateral prefrontal cortex on Stroop task performance.
    Vanderhasselt MA; De Raedt R; Baeken C; Leyman L; D'haenen H
    Exp Brain Res; 2006 Feb; 169(2):279-82. PubMed ID: 16418843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On verbal/nonverbal modality dependence of left and right inferior prefrontal activation during performance of flanker interference task.
    Morimoto HM; Hirose S; Chikazoe J; Jimura K; Asari T; Yamashita K; Miyashita Y; Konishi S
    J Cogn Neurosci; 2008 Nov; 20(11):2006-14. PubMed ID: 18416674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential impact of continuous theta-burst stimulation over left and right DLPFC on planning.
    Kaller CP; Heinze K; Frenkel A; Läppchen CH; Unterrainer JM; Weiller C; Lange R; Rahm B
    Hum Brain Mapp; 2013 Jan; 34(1):36-51. PubMed ID: 22002416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional connectivity at rest captures individual differences in visual search.
    Bueichekú E; Miró-Padilla A; Ávila C
    Brain Struct Funct; 2020 Mar; 225(2):537-549. PubMed ID: 31897605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decomposing interference during Stroop performance into different conflict factors: an event-related fMRI study.
    Melcher T; Gruber O
    Cortex; 2009 Feb; 45(2):189-200. PubMed ID: 19150520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the left DLPFC in endogenous task preparation: experimental repetitive transcranial magnetic stimulation study.
    Vanderhasselt MA; De Raedt R; Leyman L; Baeken C
    Neuropsychobiology; 2010; 61(3):162-8. PubMed ID: 20173354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The prefrontal cortex and the executive control of attention.
    Rossi AF; Pessoa L; Desimone R; Ungerleider LG
    Exp Brain Res; 2009 Jan; 192(3):489-97. PubMed ID: 19030851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural correlates of cognitive style and flexible cognitive control.
    Shin G; Kim C
    Neuroimage; 2015 Jun; 113():78-85. PubMed ID: 25812714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissociable contributions of left and right dorsolateral prefrontal cortex in planning.
    Kaller CP; Rahm B; Spreer J; Weiller C; Unterrainer JM
    Cereb Cortex; 2011 Feb; 21(2):307-17. PubMed ID: 20522540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation of Dorsolateral Prefrontal Cortex Enhances Adaptive Cognitive Control: A High-Definition Transcranial Direct Current Stimulation Study.
    Gbadeyan O; McMahon K; Steinhauser M; Meinzer M
    J Neurosci; 2016 Dec; 36(50):12530-12536. PubMed ID: 27974612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Domain-general Stroop Performance and Hemispheric Asymmetries: A Resting-state EEG Study.
    Ambrosini E; Vallesi A
    J Cogn Neurosci; 2017 May; 29(5):769-779. PubMed ID: 27897669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.