These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 30015441)

  • 41. Variability in the enzyme properties of Pseudomonas aeruginosa strain 2x oxidizing p-xylene.
    Golovleva LA; Golovlev EL; Panchak NV; Ganbarov KG
    Biol Bull Acad Sci USSR; 1979; 6(4):459-63. PubMed ID: 121547
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transcriptomic analysis reveals a bifurcated terephthalate degradation pathway in Rhodococcus sp. strain RHA1.
    Hara H; Eltis LD; Davies JE; Mohn WW
    J Bacteriol; 2007 Mar; 189(5):1641-7. PubMed ID: 17142403
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation.
    Prabhu Y; Phale PS
    Appl Microbiol Biotechnol; 2003 May; 61(4):342-51. PubMed ID: 12743764
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bacteria induced degradation of fluoranthene in minimal salt medium mediated by catabolic enzymes in vitro condition.
    Mishra S; Singh SN; Pande V
    Bioresour Technol; 2014 Jul; 164():299-308. PubMed ID: 24862007
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Key Rhodococcus enzymes in the catabolism of aromatic compounds].
    Dugan IN; Golovlev EL
    Mikrobiologiia; 1982; 51(2):181-7. PubMed ID: 7087811
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functional characterization of a gene cluster involved in gentisate catabolism in Rhodococcus sp. strain NCIMB 12038.
    Liu TT; Xu Y; Liu H; Luo S; Yin YJ; Liu SJ; Zhou NY
    Appl Microbiol Biotechnol; 2011 Apr; 90(2):671-8. PubMed ID: 21181154
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cresol metabolism by the sulfate-reducing bacterium Desulfotomaculum sp. strain Groll.
    Londry KL; Suflita JM; Tanner RS
    Can J Microbiol; 1999 Jun; 45(6):458-63. PubMed ID: 10453474
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Catabolism of substituted benzoic acids by streptomyces species.
    Sutherland JB; Crawford DL; Pometto AL
    Appl Environ Microbiol; 1981 Feb; 41(2):442-8. PubMed ID: 16345718
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Oxidation characteristics of the aromatic acids formed in DDT breakdown by a Pseudomonas aeruginosa culture].
    Pertsova RN; Baskunov BP; Golovleva LA
    Mikrobiologiia; 1982; 51(2):275-80. PubMed ID: 6806578
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Draft genome sequence of
    Kiehl SM; Anderson R; Kinkel TL; Stenglein MD
    Microbiol Resour Announc; 2024 Jan; 13(1):e0054523. PubMed ID: 38117029
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of Monovalent and Divalent Salts on the Phospholipid and Fatty Acid Compositions of a Halotolerant Planococcus sp.
    Appl Environ Microbiol; 1986 Dec; 52(6):1438. PubMed ID: 16347252
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Becoming more eye-ficient.
    Kohnen T
    J Cataract Refract Surg; 2022 Sep; 48(9):983-984. PubMed ID: 36026471
    [No Abstract]   [Full Text] [Related]  

  • 53. Biotransformation activities of fungal strain apiotrichum sp. IB-1 to ibuprofen and naproxen.
    Peng L; Yun H; Ji J; Zhang W; Xu T; Li S; Wang Z; Xie L; Li X
    Arch Microbiol; 2024 Apr; 206(5):232. PubMed ID: 38658486
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of
    Surma R; Wojcieszyńska D; Karcz J; Guzik U
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33557429
    [No Abstract]   [Full Text] [Related]  

  • 55. Naproxen in the environment: its occurrence, toxicity to nontarget organisms and biodegradation.
    Wojcieszyńska D; Guzik U
    Appl Microbiol Biotechnol; 2020 Mar; 104(5):1849-1857. PubMed ID: 31925484
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Utilization of naproxen by Amycolatopsis sp. Poz 14 and detection of the enzymes involved in the degradation metabolic pathway.
    Alanis-Sánchez BM; Pérez-Tapia SM; Vázquez-Leyva S; Mejía-Calvo I; Macías-Palacios Z; Vallejo-Castillo L; Flores-Ortiz CM; Guerrero-Barajas C; Cruz-Maya JA; Jan-Roblero J
    World J Microbiol Biotechnol; 2019 Nov; 35(12):186. PubMed ID: 31728655
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enzymes Involved in Naproxen Degradation by Planococcus sp. S5.
    Wojcieszyńska D; Domaradzka D; Hupert-Kocurek K; Guzik U
    Pol J Microbiol; 2016 Jun; 65(2):177-182. PubMed ID: 30015441
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enzymes Involved in Naproxen Degradation by Planococcus sp. S5.
    Wojcieszyńska D; Domaradzka D; Hupert-Kocurek K; Guzik U
    Pol J Microbiol; 2016; 65(2):177-82. PubMed ID: 28517919
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cometabolic Degradation of Naproxen by
    Domaradzka D; Guzik U; Hupert-Kocurek K; Wojcieszyńska D
    Water Air Soil Pollut; 2015; 226(9):297. PubMed ID: 26300571
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bacterial degradation of naproxen--undisclosed pollutant in the environment.
    Wojcieszyńska D; Domaradzka D; Hupert-Kocurek K; Guzik U
    J Environ Manage; 2014 Dec; 145():157-61. PubMed ID: 25026371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.