BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 30016077)

  • 21. Electronic design criteria for O-O bond formation via metal-oxo complexes.
    Betley TA; Wu Q; Van Voorhis T; Nocera DG
    Inorg Chem; 2008 Mar; 47(6):1849-61. PubMed ID: 18330975
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Valence-tautomerism in high-valent iron and manganese porphyrins.
    Weiss R; Bulach V; Gold A; Terner J; Trautwein AX
    J Biol Inorg Chem; 2001 Oct; 6(8):831-45. PubMed ID: 11713691
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetic studies of reactions of iron(IV)-oxo porphyrin radical cations with organic reductants.
    Pan Z; Zhang R; Newcomb M
    J Inorg Biochem; 2006 Apr; 100(4):524-32. PubMed ID: 16500709
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hole hopping through tyrosine/tryptophan chains protects proteins from oxidative damage.
    Gray HB; Winkler JR
    Proc Natl Acad Sci U S A; 2015 Sep; 112(35):10920-5. PubMed ID: 26195784
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heme oxygenase reveals its strategy for catalyzing three successive oxygenation reactions.
    Matsui T; Unno M; Ikeda-Saito M
    Acc Chem Res; 2010 Feb; 43(2):240-7. PubMed ID: 19827796
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hole Hopping through Tryptophan in Cytochrome P450.
    Ener ME; Gray HB; Winkler JR
    Biochemistry; 2017 Jul; 56(28):3531-3538. PubMed ID: 28689401
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Axial ligand effect on the rate constant of aromatic hydroxylation by iron(IV)-oxo complexes mimicking cytochrome P450 enzymes.
    Kumar D; Sastry GN; de Visser SP
    J Phys Chem B; 2012 Jan; 116(1):718-30. PubMed ID: 22132821
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Iron(IV)hydroxide pK(a) and the role of thiolate ligation in C-H bond activation by cytochrome P450.
    Yosca TH; Rittle J; Krest CM; Onderko EL; Silakov A; Calixto JC; Behan RK; Green MT
    Science; 2013 Nov; 342(6160):825-9. PubMed ID: 24233717
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular designs for controlling the local environments around metal ions.
    Cook SA; Borovik AS
    Acc Chem Res; 2015 Aug; 48(8):2407-14. PubMed ID: 26181849
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.
    De La Cruz C; Sheppard N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How does the axial ligand of cytochrome P450 biomimetics influence the regioselectivity of aliphatic versus aromatic hydroxylation?
    de Visser SP; Tahsini L; Nam W
    Chemistry; 2009; 15(22):5577-87. PubMed ID: 19347895
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mononuclear Nonheme Iron(III)-Iodosylarene and High-Valent Iron-Oxo Complexes in Olefin Epoxidation Reactions.
    Wang B; Lee YM; Seo MS; Nam W
    Angew Chem Int Ed Engl; 2015 Sep; 54(40):11740-4. PubMed ID: 26273792
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phenylalanine 393 exerts thermodynamic control over the heme of flavocytochrome P450 BM3.
    Ost TW; Miles CS; Munro AW; Murdoch J; Reid GA; Chapman SK
    Biochemistry; 2001 Nov; 40(45):13421-9. PubMed ID: 11695888
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Theory Uncovers the Role of the Methionine-Tyrosine-Tryptophan Radical Adduct in the Catalase Reaction of KatGs: O
    Wang B; Fita I; Rovira C
    Chemistry; 2018 Apr; 24(20):5388-5395. PubMed ID: 29462509
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Density Functional Theory Insights into the Role of the Methionine-Tyrosine-Tryptophan Adduct Radical in the KatG Catalase Reaction: O2 Release from the Oxyheme Intermediate.
    Kruft BI; Magliozzo RS; Jarzęcki AA
    J Phys Chem A; 2015 Jul; 119(26):6850-66. PubMed ID: 26050709
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computer-generated high-valent iron--oxo and manganese--oxo species with polyoxometalate ligands: how do they compare with the iron--oxo active species of heme enzymes?
    de Visser SP; Kumar D; Neumann R; Shaik S
    Angew Chem Int Ed Engl; 2004 Oct; 43(42):5661-5. PubMed ID: 15495193
    [No Abstract]   [Full Text] [Related]  

  • 37. Introduction: Transition Metals and Sulfur.
    Sosa Torres ME; Kroneck PMH
    Met Ions Life Sci; 2020 Mar; 20():. PubMed ID: 32851822
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spectroscopy and electronic structures of mono- and binuclear high-valent non-heme iron-oxo systems.
    Decker A; Clay MD; Solomon EI
    J Inorg Biochem; 2006 Apr; 100(4):697-706. PubMed ID: 16510189
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism of Oxidation of Ethane to Ethanol at Iron(IV)-Oxo Sites in Magnesium-Diluted Fe2(dobdc).
    Verma P; Vogiatzis KD; Planas N; Borycz J; Xiao DJ; Long JR; Gagliardi L; Truhlar DG
    J Am Chem Soc; 2015 May; 137(17):5770-81. PubMed ID: 25882096
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Models and mechanisms of O-O bond activation by cytochrome P450. A critical assessment of the potential role of multiple active intermediates in oxidative catalysis.
    Hlavica P
    Eur J Biochem; 2004 Nov; 271(22):4335-60. PubMed ID: 15560776
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.