BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1029 related articles for article (PubMed ID: 30016098)

  • 1. Fabrication and Characterization of Quinoa Protein Nanoparticle-Stabilized Food-Grade Pickering Emulsions with Ultrasound Treatment: Effect of Ionic Strength on the Freeze-Thaw Stability.
    Qin XS; Luo ZG; Peng XC; Lu XX; Zou YX
    J Agric Food Chem; 2018 Aug; 66(31):8363-8370. PubMed ID: 30016098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and Characterization of Quinoa Protein Nanoparticle-Stabilized Food-Grade Pickering Emulsions with Ultrasound Treatment: Interfacial Adsorption/Arrangement Properties.
    Qin XS; Luo ZG; Peng XC
    J Agric Food Chem; 2018 May; 66(17):4449-4457. PubMed ID: 29664623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of ionic strength on the characteristics of heat-induced soy protein aggregate nanoparticles and the freeze-thaw stability of the resultant Pickering emulsions.
    Zhu XF; Zheng J; Liu F; Qiu CY; Lin WF; Tang CH
    Food Funct; 2017 Aug; 8(8):2974-2981. PubMed ID: 28745770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of quinoa starch nanoparticles as a stabilizer for oil in water Pickering emulsion.
    Jiang F; Zhu Y; Hu WX; Li M; Liu Y; Feng J; Lv X; Yu X; Du SK
    Food Chem; 2023 Nov; 427():136697. PubMed ID: 37379746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of ionic strength and thermal pretreatment on the freeze-thaw stability of Pickering emulsion gels.
    Zhu Y; McClements DJ; Zhou W; Peng S; Zhou L; Zou L; Liu W
    Food Chem; 2020 Jan; 303():125401. PubMed ID: 31466031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freeze-thaw stability of Pickering emulsion stabilized by modified soy protein particles and its application in plant-based ice cream.
    Hei X; Liu Z; Li S; Wu C; Jiao B; Hu H; Ma X; Zhu J; Adhikari B; Wang Q; Shi A
    Int J Biol Macromol; 2024 Feb; 257(Pt 1):128183. PubMed ID: 37977455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled oxidation and digestion of Pickering emulsions stabilized by quinoa protein and (-)-epigallocatechin-3-gallate (EGCG) hybrid particles.
    He X; Yang W; Zhao Q; Qin X
    Int J Biol Macromol; 2023 Dec; 253(Pt 2):126755. PubMed ID: 37678683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soy protein nanoparticle aggregates as pickering stabilizers for oil-in-water emulsions.
    Liu F; Tang CH
    J Agric Food Chem; 2013 Sep; 61(37):8888-98. PubMed ID: 23977961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical stabilities of taro starch nanoparticles stabilized Pickering emulsions and the potential application of encapsulated tea polyphenols.
    Shao P; Zhang H; Niu B; Jin W
    Int J Biol Macromol; 2018 Oct; 118(Pt B):2032-2039. PubMed ID: 30021133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Panax Notoginseng polysaccharide stabilized gel-like Pickering emulsions: Stability and mechanism.
    Li D; Wu Y; Yin H; Feng W; Ma X; Xiao H; Xin W; Li C
    Int J Biol Macromol; 2023 Sep; 249():125893. PubMed ID: 37473886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pickering emulsion with high freeze-thaw stability stabilized by xanthan gum/lysozyme nanoparticles and konjac glucomannan.
    Xu W; Jia Y; Li J; Sun H; Cai L; Wu G; Kang M; Zang J; Luo D
    Int J Biol Macromol; 2024 Mar; 261(Pt 2):129740. PubMed ID: 38281516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversibility of freeze-thaw/re-emulsification on Pickering emulsion stabilized with gliadin/sodium caseinate nanoparticles and konjac glucomannan.
    Xu W; Ning Y; Sun Y; Sun H; Jia Y; Chai L; Luo D; Shah BR
    Int J Biol Macromol; 2023 Apr; 233():123653. PubMed ID: 36780967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of different ionic strengths on the physicochemical properties of plant and animal proteins-stabilized emulsions fabricated using ultrasound emulsification.
    Taha A; Ahmed E; Hu T; Xu X; Pan S; Hu H
    Ultrason Sonochem; 2019 Nov; 58():104627. PubMed ID: 31450289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Encapsulation of Vitamin D
    Mitbumrung W; Suphantharika M; McClements DJ; Winuprasith T
    J Food Sci; 2019 Nov; 84(11):3213-3221. PubMed ID: 31589344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Concentration of Soybean Protein Isolate and Maltose and Oil Phase Volume Fraction on Freeze-Thaw Stability of Pickering Emulsion.
    Song Z; Yang Y; Chen F; Fan J; Wang B; Bian X; Xu Y; Liu B; Fu Y; Shi Y; Zhang X; Zhang N
    Foods; 2022 Dec; 11(24):. PubMed ID: 36553760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pickering emulsions stabilized by whey protein nanoparticles prepared by thermal cross-linking.
    Wu J; Shi M; Li W; Zhao L; Wang Z; Yan X; Norde W; Li Y
    Colloids Surf B Biointerfaces; 2015 Mar; 127():96-104. PubMed ID: 25660092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and characterization of Pickering emulsion stabilized by soy protein isolate-chitosan nanoparticles.
    Yang H; Su Z; Meng X; Zhang X; Kennedy JF; Liu B
    Carbohydr Polym; 2020 Nov; 247():116712. PubMed ID: 32829840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable Pickering emulsions with polymer-grafted lignin nanoparticles (PGLNs).
    Silmore KS; Gupta C; Washburn NR
    J Colloid Interface Sci; 2016 Mar; 466():91-100. PubMed ID: 26707776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pickering emulsion gel stabilized by octenylsuccinate quinoa starch granule as lutein carrier: Role of the gel network.
    Li S; Zhang B; Li C; Fu X; Huang Q
    Food Chem; 2020 Feb; 305():125476. PubMed ID: 31525589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quinoa starch granules: a candidate for stabilising food-grade Pickering emulsions.
    Rayner M; Timgren A; Sjöö M; Dejmek P
    J Sci Food Agric; 2012 Jul; 92(9):1841-7. PubMed ID: 22318925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 52.