These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30016115)

  • 1. Near-Field Thermophotonic Systems for Low-Grade Waste-Heat Recovery.
    Zhao B; Santhanam P; Chen K; Buddhiraju S; Fan S
    Nano Lett; 2018 Aug; 18(8):5224-5230. PubMed ID: 30016115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hot Carrier-Based Near-Field Thermophotovoltaic Energy Conversion.
    St-Gelais R; Bhatt GR; Zhu L; Fan S; Lipson M
    ACS Nano; 2017 Mar; 11(3):3001-3009. PubMed ID: 28287714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanogap near-field thermophotovoltaics.
    Fiorino A; Zhu L; Thompson D; Mittapally R; Reddy P; Meyhofer E
    Nat Nanotechnol; 2018 Sep; 13(9):806-811. PubMed ID: 29915273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-sustaining thermophotonic circuits.
    Zhao B; Buddhiraju S; Santhanam P; Chen K; Fan S
    Proc Natl Acad Sci U S A; 2019 Jun; 116(24):11596-11601. PubMed ID: 31118287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-field thermophotovoltaics for efficient heat to electricity conversion at high power density.
    Mittapally R; Lee B; Zhu L; Reihani A; Lim JW; Fan D; Forrest SR; Reddy P; Meyhofer E
    Nat Commun; 2021 Jul; 12(1):4364. PubMed ID: 34272361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance Optimization and Exergy Analysis of Thermoelectric Heat Recovery System for Gas Turbine Power Plants.
    Alsaghir AM; Bahk JH
    Entropy (Basel); 2023 Nov; 25(12):. PubMed ID: 38136463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Installing Different Types of Cooling Fins on the Cold Side of a Thermoelectric Power Generation Device on the Thermal Efficiency and Exergy Efficiency of Power Cable Surface Waste Heat Recovery.
    Hu Z; de León F; Wang R; Li Y
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An overview of commercialization and marketization of thermoelectric generators for low-temperature waste heat recovery.
    Lee KT; Lee DS; Chen WH; Lin YL; Luo D; Park YK; Bandala A
    iScience; 2023 Oct; 26(10):107874. PubMed ID: 37860755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Performance Thermoelectric Generators for Field Deployments.
    Kishore RA; Nozariasbmarz A; Poudel B; Priya S
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10389-10401. PubMed ID: 32040298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems.
    Ilic O; Jablan M; Joannopoulos JD; Celanovic I; Soljacić M
    Opt Express; 2012 May; 20(10):A366-84. PubMed ID: 22712094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a Small Thermoelectric Generators Prototype for Energy Harvesting from Low Temperature Waste Heat at Industrial Plant.
    Chiarotti U; Moroli V; Menchetti F; Piancaldini R; Bianco L; Viotto A; Baracchini G; Gaspardo D; Nazzi F; Curti M; Gabriele M
    J Nanosci Nanotechnol; 2017 Mar; 17(3):1586-591. PubMed ID: 29693960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of an InSb thermoradiative system for harvesting low-grade waste heat.
    Zhang X; Ang YS; Chen JC; Ang LK
    Opt Lett; 2019 Jul; 44(13):3354-3357. PubMed ID: 31259959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-field thermophotovoltaic energy conversion using an intermediate transparent substrate.
    Inoue T; Watanabe K; Asano T; Noda S
    Opt Express; 2018 Jan; 26(2):A192-A208. PubMed ID: 29401929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experiments on Waste Heat Thermoelectric Generation for Passenger Vehicles.
    Chen J; Xie W; Dai M; Shen G; Li G; Tang Y
    Micromachines (Basel); 2022 Jan; 13(1):. PubMed ID: 35056272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling assisted evaluation of direct electricity generation from waste heat of wastewater via a thermoelectric generator.
    Zou S; Kanimba E; Diller TE; Tian Z; He Z
    Sci Total Environ; 2018 Sep; 635():1215-1224. PubMed ID: 29710576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microturbine and Thermoelectric Generator Combined System: A Case Study.
    Miozzo A; Boldrini S; Ferrario A; Fabrizio M
    J Nanosci Nanotechnol; 2017 Mar; 17(3):1601-607. PubMed ID: 29693978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films.
    Pandya S; Wilbur J; Kim J; Gao R; Dasgupta A; Dames C; Martin LW
    Nat Mater; 2018 May; 17(5):432-438. PubMed ID: 29662157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Review on Electroactive Polymers for Waste Heat Recovery.
    Kolasińska E; Kolasiński P
    Materials (Basel); 2016 Jun; 9(6):. PubMed ID: 28773605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Efficiency Photo-Thermo-Electric System with Waste Heat Utilization and Energy Storage.
    Wu Y; Li Y; Long Y; Xu Y; Yang J; Zhu H; Liu T; Shi G
    ACS Appl Mater Interfaces; 2022 Sep; 14(35):40437-40446. PubMed ID: 36005284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-Chip Near-Field Thermophotovoltaic Device Integrating a Thin-Film Thermal Emitter and Photovoltaic Cell.
    Inoue T; Koyama T; Kang DD; Ikeda K; Asano T; Noda S
    Nano Lett; 2019 Jun; 19(6):3948-3952. PubMed ID: 31137936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.