BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30016330)

  • 1. Detection of cooperatively bound transcription factor pairs using ChIP-seq peak intensities and expectation maximization.
    Datta V; Siddharthan R; Krishna S
    PLoS One; 2018; 13(7):e0199771. PubMed ID: 30016330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying cooperative transcription factors in yeast using multiple data sources.
    Lai FJ; Jhu MH; Chiu CC; Huang YM; Wu WS
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S2. PubMed ID: 25559499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ChIPulate: A comprehensive ChIP-seq simulation pipeline.
    Datta V; Hannenhalli S; Siddharthan R
    PLoS Comput Biol; 2019 Mar; 15(3):e1006921. PubMed ID: 30897079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properly defining the targets of a transcription factor significantly improves the computational identification of cooperative transcription factor pairs in yeast.
    Wu WS; Lai FJ
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S10. PubMed ID: 26679776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biophysical model for analysis of transcription factor interaction and binding site arrangement from genome-wide binding data.
    He X; Chen CC; Hong F; Fang F; Sinha S; Ng HH; Zhong S
    PLoS One; 2009 Dec; 4(12):e8155. PubMed ID: 19956545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MixChIP: a probabilistic method for cell type specific protein-DNA binding analysis.
    Rautio S; Lähdesmäki H
    BMC Bioinformatics; 2015 Dec; 16():413. PubMed ID: 26703974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ChIPXpress: using publicly available gene expression data to improve ChIP-seq and ChIP-chip target gene ranking.
    Wu G; Ji H
    BMC Bioinformatics; 2013 Jun; 14():188. PubMed ID: 23758851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imputation for transcription factor binding predictions based on deep learning.
    Qin Q; Feng J
    PLoS Comput Biol; 2017 Feb; 13(2):e1005403. PubMed ID: 28234893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revealing transcription factor and histone modification co-localization and dynamics across cell lines by integrating ChIP-seq and RNA-seq data.
    Zhang L; Xue G; Liu J; Li Q; Wang Y
    BMC Genomics; 2018 Dec; 19(Suppl 10):914. PubMed ID: 30598100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring functional transcription factor-gene binding pairs by integrating transcription factor binding data with transcription factor knockout data.
    Yang TH; Wu WS
    BMC Syst Biol; 2013; 7 Suppl 6(Suppl 6):S13. PubMed ID: 24565265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping functional transcription factor networks from gene expression data.
    Haynes BC; Maier EJ; Kramer MH; Wang PI; Brown H; Brent MR
    Genome Res; 2013 Aug; 23(8):1319-28. PubMed ID: 23636944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription Factor Binding Site Mapping Using ChIP-Seq.
    Jaini S; Lyubetskaya A; Gomes A; Peterson M; Tae Park S; Raman S; Schoolnik G; Galagan J
    Microbiol Spectr; 2014 Apr; 2(2):. PubMed ID: 26105820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ritornello: high fidelity control-free chromatin immunoprecipitation peak calling.
    Stanton KP; Jin J; Lederman RR; Weissman SM; Kluger Y
    Nucleic Acids Res; 2017 Dec; 45(21):e173. PubMed ID: 28981893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatin immunoprecipitation and multiplex sequencing (ChIP-Seq) to identify global transcription factor binding sites in the nematode Caenorhabditis elegans.
    Brdlik CM; Niu W; Snyder M
    Methods Enzymol; 2014; 539():89-111. PubMed ID: 24581441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo motif discovery facilitates identification of interactions between transcription factors in Saccharomyces cerevisiae.
    Chen MJ; Chou LC; Hsieh TT; Lee DD; Liu KW; Yu CY; Oyang YJ; Tsai HK; Chen CY
    Bioinformatics; 2012 Mar; 28(5):701-8. PubMed ID: 22238267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From binding motifs in ChIP-Seq data to improved models of transcription factor binding sites.
    Kulakovskiy I; Levitsky V; Oshchepkov D; Bryzgalov L; Vorontsov I; Makeev V
    J Bioinform Comput Biol; 2013 Feb; 11(1):1340004. PubMed ID: 23427986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inferring transcription factor complexes from ChIP-seq data.
    Whitington T; Frith MC; Johnson J; Bailey TL
    Nucleic Acids Res; 2011 Aug; 39(15):e98. PubMed ID: 21602262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MOCCS: Clarifying DNA-binding motif ambiguity using ChIP-Seq data.
    Ozaki H; Iwasaki W
    Comput Biol Chem; 2016 Aug; 63():62-72. PubMed ID: 26971251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric Conservation within Pairs of Co-Occurred Motifs Mediates Weak Direct Binding of Transcription Factors in ChIP-Seq Data.
    Levitsky V; Oshchepkov D; Zemlyanskaya E; Merkulova T
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.