BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 30016591)

  • 1. Improving the Stability and Efficiency of CuO Photocathodes for Solar Hydrogen Production through Modification with Iron.
    Cots A; Bonete P; Gómez R
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26348-26356. PubMed ID: 30016591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable and Efficient CuO Based Photocathode through Oxygen-Rich Composition and Au-Pd Nanostructure Incorporation for Solar-Hydrogen Production.
    Masudy-Panah S; Siavash Moakhar R; Chua CS; Kushwaha A; Dalapati GK
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):27596-27606. PubMed ID: 28731678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoengineered Advanced Materials for Enabling Hydrogen Economy: Functionalized Graphene-Incorporated Cupric Oxide Catalyst for Efficient Solar Hydrogen Production.
    Dalapati GK; Masudy-Panah S; Moakhar RS; Chakrabortty S; Ghosh S; Kushwaha A; Katal R; Chua CS; Xiao G; Tripathy S; Ramakrishna S
    Glob Chall; 2020 Mar; 4(3):1900087. PubMed ID: 32140256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the structural evolution of nanoporous optically transparent CuO photocathodes upon calcination for photoelectrochemical applications.
    Korell L; Lauterbach S; Timm J; Wang L; Mellin M; Kundmann A; Wu Q; Tian C; Marschall R; Hofmann JP; Osterloh FE; Einert M
    Nanoscale Adv; 2024 May; 6(11):2875-2891. PubMed ID: 38817433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled fabrication of photoactive copper oxide-cobalt oxide nanowire heterostructures for efficient phenol photodegradation.
    Shi W; Chopra N
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5590-607. PubMed ID: 22985284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sol-gel deposited Cu2O and CuO thin films for photocatalytic water splitting.
    Lim YF; Chua CS; Lee CJ; Chi D
    Phys Chem Chem Phys; 2014 Dec; 16(47):25928-34. PubMed ID: 25355367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cu
    Yang Y; Xu D; Wu Q; Diao P
    Sci Rep; 2016 Oct; 6():35158. PubMed ID: 27748380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying Copper Vacancies and Their Role in the CuO Based Photocathode for Water Splitting.
    Wang Z; Zhang L; Schülli TU; Bai Y; Monny SA; Du A; Wang L
    Angew Chem Int Ed Engl; 2019 Dec; 58(49):17604-17609. PubMed ID: 31560406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible cupric oxide photocathode with enhanced stability for renewable hydrogen energy production from solar water splitting.
    Li Y; Luo K
    RSC Adv; 2019 Mar; 9(15):8350-8354. PubMed ID: 35518699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How photocorrosion can trick you: a detailed study on low-bandgap Li doped CuO photocathodes for solar hydrogen production.
    Kampmann J; Betzler S; Hajiyani H; Häringer S; Beetz M; Harzer T; Kraus J; Lotsch BV; Scheu C; Pentcheva R; Fattakhova-Rohlfing D; Bein T
    Nanoscale; 2020 Apr; 12(14):7766-7775. PubMed ID: 32215409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ni-core CuO-shell fibers produced by electrospinning and electroplating as efficient photocathode materials for solar water splitting.
    Jo HS; Kim MW; Joshi B; Samuel E; Yoon H; Swihart MT; Yoon SS
    Nanoscale; 2018 May; 10(20):9720-9728. PubMed ID: 29762621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ZnO/CuO heterojunction branched nanowires for photoelectrochemical hydrogen generation.
    Kargar A; Jing Y; Kim SJ; Riley CT; Pan X; Wang D
    ACS Nano; 2013 Dec; 7(12):11112-20. PubMed ID: 24205982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alkali Cation Engineered Chemical Self-Oxidation of Copper Oxide Nanowire-Based Photocathodes.
    Su Kim D; Hoon Choi J; Deshpande NG; Hyeon Lee H; Woong Lee K; Young Oh S; Koun Cho H
    ChemSusChem; 2023 Feb; 16(3):e202202074. PubMed ID: 36471655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable Binder-Free Supersonic Cold Spraying of Nanotextured Cupric Oxide (CuO) Films as Efficient Photocathodes.
    Lee JG; Kim DY; Lee JH; Kim MW; An S; Jo HS; Nervi C; Al-Deyab SS; Swihart MT; Yoon SS
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15406-14. PubMed ID: 27232695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic photoelectrochemical cell for solar-driven CO
    Kalamaras E; Belekoukia M; Tan JZY; Xuan J; Maroto-Valer MM; Andresen JM
    Faraday Discuss; 2019 Jul; 215(0):329-344. PubMed ID: 30942213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Cathodes of Cupric Oxide Nanosheets Coated onto Macroporous Antimony-Doped Tin Oxide for Photoelectrochemical Water Splitting.
    Wang XD; Xu YF; Chen BX; Zhou N; Chen HY; Kuang DB; Su CY
    ChemSusChem; 2016 Oct; 9(20):3012-3018. PubMed ID: 27704701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient solar photoelectrosynthesis of methanol from carbon dioxide using hybrid CuO-Cu2O semiconductor nanorod arrays.
    Ghadimkhani G; de Tacconi NR; Chanmanee W; Janaky C; Rajeshwar K
    Chem Commun (Camb); 2013 Feb; 49(13):1297-9. PubMed ID: 23296091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst.
    Morales-Guio CG; Tilley SD; Vrubel H; Grätzel M; Hu X
    Nat Commun; 2014; 5():3059. PubMed ID: 24402352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient CuO/Ag
    Mustafa E; Dawi EA; Ibupoto ZH; Ibrahim AMM; Elsukova A; Liu X; Tahira A; Adam RE; Willander M; Nur O
    RSC Adv; 2023 Apr; 13(17):11297-11310. PubMed ID: 37057263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanocrystal Engineering of Sputter-Grown CuO Photocathode for Visible-Light-Driven Electrochemical Water Splitting.
    Masudy-Panah S; Siavash Moakhar R; Chua CS; Tan HR; Wong TI; Chi D; Dalapati GK
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1206-13. PubMed ID: 26694248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.