BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30016637)

  • 1. Cellular alignment and fusion: Quantifying the effect of macrophages and fibroblasts on myoblast terminal differentiation.
    Venter C; Niesler CU
    Exp Cell Res; 2018 Sep; 370(2):542-550. PubMed ID: 30016637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A triple co-culture method to investigate the effect of macrophages and fibroblasts on myoblast proliferation and migration.
    Venter C; Niesler C
    Biotechniques; 2018 Feb; 64(2):52-58. PubMed ID: 29571282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fibroblasts influence muscle progenitor differentiation and alignment in contact independent and dependent manners in organized co-culture devices.
    Rao N; Evans S; Stewart D; Spencer KH; Sheikh F; Hui EE; Christman KL
    Biomed Microdevices; 2013 Feb; 15(1):161-9. PubMed ID: 22983793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical strain applied to human fibroblasts differentially regulates skeletal myoblast differentiation.
    Hicks MR; Cao TV; Campbell DH; Standley PR
    J Appl Physiol (1985); 2012 Aug; 113(3):465-72. PubMed ID: 22678963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic Mutations in jamb, jamc, and myomaker Revealed Different Roles on Myoblast Fusion and Muscle Growth.
    Si Y; Wen H; Du S
    Mar Biotechnol (NY); 2019 Feb; 21(1):111-123. PubMed ID: 30467785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion.
    Hochreiter-Hufford AE; Lee CS; Kinchen JM; Sokolowski JD; Arandjelovic S; Call JA; Klibanov AL; Yan Z; Mandell JW; Ravichandran KS
    Nature; 2013 May; 497(7448):263-7. PubMed ID: 23615608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RhoE controls myoblast alignment prior fusion through RhoA and ROCK.
    Fortier M; Comunale F; Kucharczak J; Blangy A; Charrasse S; Gauthier-Rouvière C
    Cell Death Differ; 2008 Aug; 15(8):1221-31. PubMed ID: 18369372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous isolation of enriched myoblasts and fibroblasts for migration analysis within a novel co-culture assay.
    Goetsch KP; Snyman C; Myburgh KH; Niesler CU
    Biotechniques; 2015 Jan; 58(1):25-32. PubMed ID: 25605577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IL-4 acts as a myoblast recruitment factor during mammalian muscle growth.
    Horsley V; Jansen KM; Mills ST; Pavlath GK
    Cell; 2003 May; 113(4):483-94. PubMed ID: 12757709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of arachidonic acid and its major prostaglandin derivatives on bovine myoblast proliferation, differentiation, and fusion.
    Leng X; Jiang H
    Domest Anim Endocrinol; 2019 Apr; 67():28-36. PubMed ID: 30677541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of topological constraints on the alignment and maturation of multinucleated myotubes.
    Song KY; Correia JC; Ruas JL; Teixeira AI
    Biotechnol Bioeng; 2021 Jun; 118(6):2234-2242. PubMed ID: 33629347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The regulation of myoblast plasticity and its mechanism.
    Zhang P; Chen XP
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2012 Nov; 28(6):524-31. PubMed ID: 23581181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HEMA 3 Staining: A Simple Alternative for the Assessment of Myoblast Differentiation.
    Levitt DE; Adler KA; Simon L
    Curr Protoc Stem Cell Biol; 2019 Dec; 51(1):e101. PubMed ID: 31756292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms regulating myoblast fusion: A multilevel interplay.
    Lehka L; Rędowicz MJ
    Semin Cell Dev Biol; 2020 Aug; 104():81-92. PubMed ID: 32063453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteopontin expression in coculture of differentiating rat fetal skeletal fibroblasts and myoblasts.
    Pereira RO; Carvalho SN; Stumbo AC; Rodrigues CA; Porto LC; Moura AS; Carvalho L
    In Vitro Cell Dev Biol Anim; 2006; 42(1-2):4-7. PubMed ID: 16618210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro myoblast motility models: investigating migration dynamics for the study of skeletal muscle repair.
    Goetsch KP; Myburgh KH; Niesler CU
    J Muscle Res Cell Motil; 2013 Dec; 34(5-6):333-47. PubMed ID: 24150600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel in vitro model for the assessment of postnatal myonuclear accretion.
    Kneppers A; Verdijk L; de Theije C; Corten M; Gielen E; van Loon L; Schols A; Langen R
    Skelet Muscle; 2018 Feb; 8(1):4. PubMed ID: 29444710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined substrate micropatterning and FFT analysis reveals myotube size control and alignment by contact guidance.
    Vajanthri KY; Sidu RK; Poddar S; Singh AK; Mahto SK
    Cytoskeleton (Hoboken); 2019 Mar; 76(3):269-285. PubMed ID: 31074945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nap1-mediated actin remodeling is essential for mammalian myoblast fusion.
    Nowak SJ; Nahirney PC; Hadjantonakis AK; Baylies MK
    J Cell Sci; 2009 Sep; 122(Pt 18):3282-93. PubMed ID: 19706686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of muscle formation by the fusogenic micropeptide myomixer.
    Bi P; Ramirez-Martinez A; Li H; Cannavino J; McAnally JR; Shelton JM; Sánchez-Ortiz E; Bassel-Duby R; Olson EN
    Science; 2017 Apr; 356(6335):323-327. PubMed ID: 28386024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.