These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Modulation of calcium oxalate dihydrate growth by selective crystal-face binding of phosphorylated osteopontin and polyaspartate peptide showing occlusion by sectoral (compositional) zoning. Chien YC; Masica DL; Gray JJ; Nguyen S; Vali H; McKee MD J Biol Chem; 2009 Aug; 284(35):23491-501. PubMed ID: 19581305 [TBL] [Abstract][Full Text] [Related]
3. On the catalysis of calcium oxalate dihydrate formation by osteopontin peptides. Chan BP; Vincent K; Lajoie GA; Goldberg HA; Grohe B; Hunter GK Colloids Surf B Biointerfaces; 2012 Aug; 96():22-8. PubMed ID: 22503630 [TBL] [Abstract][Full Text] [Related]
4. The effect of intracrystalline and surface-bound osteopontin on the degradation and dissolution of calcium oxalate dihydrate crystals in MDCKII cells. Thurgood LA; Sørensen ES; Ryall RL Urol Res; 2012 Feb; 40(1):1-15. PubMed ID: 21932131 [TBL] [Abstract][Full Text] [Related]
5. Kinetics of calcium oxalate crystal growth in the presence of osteopontin isoforms: an analysis by scanning confocal interference microcopy. Langdon A; Wignall GR; Rogers K; Sørensen ES; Denstedt J; Grohe B; Goldberg HA; Hunter GK Calcif Tissue Int; 2009 Mar; 84(3):240-8. PubMed ID: 19189038 [TBL] [Abstract][Full Text] [Related]
6. Control of calcium oxalate crystal growth by face-specific adsorption of an osteopontin phosphopeptide. Grohe B; O'Young J; Ionescu DA; Lajoie G; Rogers KA; Karttunen M; Goldberg HA; Hunter GK J Am Chem Soc; 2007 Dec; 129(48):14946-51. PubMed ID: 17994739 [TBL] [Abstract][Full Text] [Related]
7. The effect of intracrystalline and surface-bound osteopontin on the attachment of calcium oxalate dihydrate crystals to Madin-Darby canine kidney (MDCK) cells in ultrafiltered human urine. Thurgood LA; Sørensen ES; Ryall RL BJU Int; 2012 Apr; 109(7):1100-9. PubMed ID: 21883862 [TBL] [Abstract][Full Text] [Related]
8. Phosphorylation-dependent inhibition of mineralization by osteopontin ASARM peptides is regulated by PHEX cleavage. Addison WN; Masica DL; Gray JJ; McKee MD J Bone Miner Res; 2010 Apr; 25(4):695-705. PubMed ID: 19775205 [TBL] [Abstract][Full Text] [Related]
9. Intracrystalline proteins and urolithiasis: a comparison of the protein content and ultrastructure of urinary calcium oxalate monohydrate and dihydrate crystals. Ryall RL; Chauvet MC; Grover PK BJU Int; 2005 Sep; 96(4):654-63. PubMed ID: 16104927 [TBL] [Abstract][Full Text] [Related]
10. Face-specific incorporation of osteopontin into urinary and inorganic calcium oxalate monohydrate and dihydrate crystals. Thurgood LA; Cook AF; Sørensen ES; Ryall RL Urol Res; 2010 Oct; 38(5):357-76. PubMed ID: 20652561 [TBL] [Abstract][Full Text] [Related]
11. Phosphorylation of osteopontin peptides mediates adsorption to and incorporation into calcium oxalate crystals. O'Young J; Chirico S; Al Tarhuni N; Grohe B; Karttunen M; Goldberg HA; Hunter GK Cells Tissues Organs; 2009; 189(1-4):51-5. PubMed ID: 18728346 [TBL] [Abstract][Full Text] [Related]
12. Incorporation of osteopontin peptide into kidney stone-related calcium oxalate monohydrate crystals: a quantitative study. Gleberzon JS; Liao Y; Mittler S; Goldberg HA; Grohe B Urolithiasis; 2019 Oct; 47(5):425-440. PubMed ID: 30569197 [TBL] [Abstract][Full Text] [Related]
13. The osteopontin-controlled switching of calcium oxalate monohydrate morphologies in artificial urine provides insights into the formation of papillary kidney stones. Langdon A; Grohe B Colloids Surf B Biointerfaces; 2016 Oct; 146():296-306. PubMed ID: 27362921 [TBL] [Abstract][Full Text] [Related]
14. Specific adsorption of osteopontin and synthetic polypeptides to calcium oxalate monohydrate crystals. Taller A; Grohe B; Rogers KA; Goldberg HA; Hunter GK Biophys J; 2007 Sep; 93(5):1768-77. PubMed ID: 17496021 [TBL] [Abstract][Full Text] [Related]
17. Phosphorylation of osteopontin is required for inhibition of calcium oxalate crystallization. Wang L; Guan X; Tang R; Hoyer JR; Wierzbicki A; De Yoreo JJ; Nancollas GH J Phys Chem B; 2008 Jul; 112(30):9151-7. PubMed ID: 18611047 [TBL] [Abstract][Full Text] [Related]
18. Multicolor imaging of calcium-binding proteins in human kidney stones for elucidating the effects of proteins on crystal growth. Tanaka Y; Maruyama M; Okada A; Furukawa Y; Momma K; Sugiura Y; Tajiri R; Sawada KP; Tanaka S; Takano K; Taguchi K; Hamamoto S; Ando R; Tsukamoto K; Yoshimura M; Mori Y; Yasui T Sci Rep; 2021 Aug; 11(1):16841. PubMed ID: 34446727 [TBL] [Abstract][Full Text] [Related]
19. In vitro effects on calcium oxalate crystallization kinetics and crystal morphology of an aqueous extract from Ceterach officinarum: Analysis of a potential antilithiatic mechanism. De Bellis R; Piacentini MP; Meli MA; Mattioli M; Menotta M; Mari M; Valentini L; Palomba L; Desideri D; Chiarantini L PLoS One; 2019; 14(6):e0218734. PubMed ID: 31238335 [TBL] [Abstract][Full Text] [Related]
20. Crystal surface adhesion explains the pathological activity of calcium oxalate hydrates in kidney stone formation. Sheng X; Ward MD; Wesson JA J Am Soc Nephrol; 2005 Jul; 16(7):1904-8. PubMed ID: 15930089 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]