These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
456 related articles for article (PubMed ID: 30016717)
21. Characterization and identification of protein O-GlcNAcylation sites with substrate specificity. Wu HY; Lu CT; Kao HJ; Chen YJ; Chen YJ; Lee TY BMC Bioinformatics; 2014; 15 Suppl 16(Suppl 16):S1. PubMed ID: 25521204 [TBL] [Abstract][Full Text] [Related]
22. Global identification and characterization of both O-GlcNAcylation and phosphorylation at the murine synapse. Trinidad JC; Barkan DT; Gulledge BF; Thalhammer A; Sali A; Schoepfer R; Burlingame AL Mol Cell Proteomics; 2012 Aug; 11(8):215-29. PubMed ID: 22645316 [TBL] [Abstract][Full Text] [Related]
23. Purification and identification of O-GlcNAc-modified peptides using phosphate-based alkyne CLICK chemistry in combination with titanium dioxide chromatography and mass spectrometry. Parker BL; Gupta P; Cordwell SJ; Larsen MR; Palmisano G J Proteome Res; 2011 Apr; 10(4):1449-58. PubMed ID: 21158410 [TBL] [Abstract][Full Text] [Related]
24. Regulatory O-GlcNAcylation sites on FoxO1 are yet to be identified. Fardini Y; Perez-Cervera Y; Camoin L; Pagesy P; Lefebvre T; Issad T Biochem Biophys Res Commun; 2015 Jun; 462(2):151-8. PubMed ID: 25944660 [TBL] [Abstract][Full Text] [Related]
25. Terminal differentiation program of skeletal myogenesis is negatively regulated by O-GlcNAc glycosylation. Ogawa M; Mizofuchi H; Kobayashi Y; Tsuzuki G; Yamamoto M; Wada S; Kamemura K Biochim Biophys Acta; 2012 Jan; 1820(1):24-32. PubMed ID: 22056510 [TBL] [Abstract][Full Text] [Related]
26. Chemical Reporters and Their Bioorthogonal Reactions for Labeling Protein Kim EJ Molecules; 2018 Sep; 23(10):. PubMed ID: 30241321 [TBL] [Abstract][Full Text] [Related]
27. Mapping of O-linked beta-N-acetylglucosamine modification sites in key contractile proteins of rat skeletal muscle. Hédou J; Bastide B; Page A; Michalski JC; Morelle W Proteomics; 2009 Apr; 9(8):2139-48. PubMed ID: 19322778 [TBL] [Abstract][Full Text] [Related]
28. Involvement of O-GlcNAcylation in the Skeletal Muscle Physiology and Physiopathology: Focus on Muscle Metabolism. Lambert M; Bastide B; Cieniewski-Bernard C Front Endocrinol (Lausanne); 2018; 9():578. PubMed ID: 30459708 [TBL] [Abstract][Full Text] [Related]
29. Identifying potentially O-GlcNAcylated proteins using metabolic labeling, bioorthogonal enrichment, and Western blotting. Darabedian N; Pratt MR Methods Enzymol; 2019; 622():293-307. PubMed ID: 31155058 [TBL] [Abstract][Full Text] [Related]
30. Quantitative Profiling of Protein O-GlcNAcylation Sites by an Isotope-Tagged Cleavable Linker. Qin K; Zhu Y; Qin W; Gao J; Shao X; Wang YL; Zhou W; Wang C; Chen X ACS Chem Biol; 2018 Aug; 13(8):1983-1989. PubMed ID: 30059200 [TBL] [Abstract][Full Text] [Related]
31. Increasing O-GlcNAcylation level on organ culture of soleus modulates the calcium activation parameters of muscle fibers. Cieniewski-Bernard C; Montel V; Berthoin S; Bastide B PLoS One; 2012; 7(10):e48218. PubMed ID: 23110217 [TBL] [Abstract][Full Text] [Related]
32. Chemical arsenal for the study of O-GlcNAc. Kim EJ Molecules; 2011 Feb; 16(3):1987-2022. PubMed ID: 21358590 [TBL] [Abstract][Full Text] [Related]
33. Multiple reaction monitoring mass spectrometry for the discovery and quantification of O-GlcNAc-modified proteins. Maury JJ; Ng D; Bi X; Bardor M; Choo AB Anal Chem; 2014 Jan; 86(1):395-402. PubMed ID: 24144119 [TBL] [Abstract][Full Text] [Related]
34. An OGA-Resistant Probe Allows Specific Visualization and Accurate Identification of O-GlcNAc-Modified Proteins in Cells. Li J; Wang J; Wen L; Zhu H; Li S; Huang K; Jiang K; Li X; Ma C; Qu J; Parameswaran A; Song J; Zhao W; Wang PG ACS Chem Biol; 2016 Nov; 11(11):3002-3006. PubMed ID: 27622469 [TBL] [Abstract][Full Text] [Related]
35. Detecting and Imaging O-GlcNAc Sites Using Glycosyltransferases: A Systematic Approach to Study O-GlcNAc. Wu ZL; Tatge TJ; Grill AE; Zou Y Cell Chem Biol; 2018 Nov; 25(11):1428-1435.e3. PubMed ID: 30100348 [TBL] [Abstract][Full Text] [Related]
36. Combined Antibody/Lectin Enrichment Identifies Extensive Changes in the O-GlcNAc Sub-proteome upon Oxidative Stress. Lee A; Miller D; Henry R; Paruchuri VD; O'Meally RN; Boronina T; Cole RN; Zachara NE J Proteome Res; 2016 Dec; 15(12):4318-4336. PubMed ID: 27669760 [TBL] [Abstract][Full Text] [Related]
37. Discovery and confirmation of O-GlcNAcylated proteins in rat liver mitochondria by combination of mass spectrometry and immunological methods. Cao W; Cao J; Huang J; Yao J; Yan G; Xu H; Yang P PLoS One; 2013; 8(10):e76399. PubMed ID: 24098488 [TBL] [Abstract][Full Text] [Related]
38. Differential Detection of O-GlcNAcylated proteins in the heart using antibodies. Narayanan B; Zahra F; Reeves RA; Aggarwal A; O'Meally RN; Henry RK; Craven M; Jacobson A; Cole RN; Kohr MJ; Umapathi P; Zachara NE Anal Biochem; 2023 Oct; 678():115262. PubMed ID: 37507081 [TBL] [Abstract][Full Text] [Related]
39. A new tandem enrichment strategy for the simultaneous profiling of Fan Z; Li J; Liu T; Zhang Z; Qin W; Qian X Analyst; 2021 Feb; 146(4):1188-1197. PubMed ID: 33465208 [TBL] [Abstract][Full Text] [Related]
40. Metabolic Labeling for the Visualization and Identification of Potentially O-GlcNAc-Modified Proteins. Pedowitz NJ; Zaro BW; Pratt MR Curr Protoc Chem Biol; 2020 Jun; 12(2):e81. PubMed ID: 32289208 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]