These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 30016859)
1. Activity, Selectivity, and Durability of Ruthenium Nanoparticle Catalysts for Ammonia Synthesis by Reactive Molecular Dynamics Simulation: The Size Effect. Kim SY; Lee HW; Pai SJ; Han SS ACS Appl Mater Interfaces; 2018 Aug; 10(31):26188-26194. PubMed ID: 30016859 [TBL] [Abstract][Full Text] [Related]
2. Atomistic Insights into H Banisalman MJ; Lee HW; Koh H; Han SS ACS Appl Mater Interfaces; 2021 Apr; 13(15):17577-17585. PubMed ID: 33835774 [TBL] [Abstract][Full Text] [Related]
3. Origin of the catalytic activity of face-centered-cubic ruthenium nanoparticles determined from an atomic-scale structure. Kumara LS; Sakata O; Kohara S; Yang A; Song C; Kusada K; Kobayashi H; Kitagawa H Phys Chem Chem Phys; 2016 Nov; 18(44):30622-30629. PubMed ID: 27787531 [TBL] [Abstract][Full Text] [Related]
4. Size effect of ruthenium nanoparticles in catalytic carbon monoxide oxidation. Joo SH; Park JY; Renzas JR; Butcher DR; Huang W; Somorjai GA Nano Lett; 2010 Jul; 10(7):2709-13. PubMed ID: 20568824 [TBL] [Abstract][Full Text] [Related]
5. Size dependence of structural parameters in fcc and hcp Ru nanoparticles, revealed by Rietveld refinement analysis of high-energy X-ray diffraction data. Song C; Sakata O; Kumara LS; Kohara S; Yang A; Kusada K; Kobayashi H; Kitagawa H Sci Rep; 2016 Aug; 6():31400. PubMed ID: 27506187 [TBL] [Abstract][Full Text] [Related]
6. Ambient synthesis of high-quality ruthenium nanowires and the morphology-dependent electrocatalytic performance of platinum-decorated ruthenium nanowires and nanoparticles in the methanol oxidation reaction. Koenigsmann C; Semple DB; Sutter E; Tobierre SE; Wong SS ACS Appl Mater Interfaces; 2013 Jun; 5(12):5518-30. PubMed ID: 23742154 [TBL] [Abstract][Full Text] [Related]
7. Metal nanoparticle catalysts beginning to shape-up. Roldan Cuenya B Acc Chem Res; 2013 Aug; 46(8):1682-91. PubMed ID: 23252675 [TBL] [Abstract][Full Text] [Related]
8. Synthesis-atomic structure-properties relationships in metallic nanoparticles by total scattering experiments and 3D computer simulations: case of Pt-Ru nanoalloy catalysts. Prasai B; Ren Y; Shan S; Zhao Y; Cronk H; Luo J; Zhong CJ; Petkov V Nanoscale; 2015 May; 7(17):8122-34. PubMed ID: 25874741 [TBL] [Abstract][Full Text] [Related]
9. Chemical Insights into the Design and Development of Face-Centered Cubic Ruthenium Catalysts for Fischer-Tropsch Synthesis. Li WZ; Liu JX; Gu J; Zhou W; Yao SY; Si R; Guo Y; Su HY; Yan CH; Li WX; Zhang YW; Ma D J Am Chem Soc; 2017 Feb; 139(6):2267-2276. PubMed ID: 28099028 [TBL] [Abstract][Full Text] [Related]
10. Particle size effects in the catalytic electroreduction of CO₂ on Cu nanoparticles. Reske R; Mistry H; Behafarid F; Roldan Cuenya B; Strasser P J Am Chem Soc; 2014 May; 136(19):6978-86. PubMed ID: 24746172 [TBL] [Abstract][Full Text] [Related]
11. Tunable preparation of ruthenium nanoparticles with superior size-dependent catalytic hydrogenation properties. Zhao Y; Luo Y; Yang X; Yang Y; Song Q J Hazard Mater; 2017 Jun; 332():124-131. PubMed ID: 28285105 [TBL] [Abstract][Full Text] [Related]
13. Hydrogen Production from Aqueous Solutions of Urea with Ruthenium-based Catalysts. Furukawa S; Suzuki R; Ochi K; Yashima T; Komatsu T ChemSusChem; 2015 Jun; 8(12):2028-30. PubMed ID: 25891973 [TBL] [Abstract][Full Text] [Related]
14. Nature of Reactive Hydrogen for Ammonia Synthesis over a Ru/C12A7 Electride Catalyst. Kammert J; Moon J; Cheng Y; Daemen L; Irle S; Fung V; Liu J; Page K; Ma X; Phaneuf V; Tong J; Ramirez-Cuesta AJ; Wu Z J Am Chem Soc; 2020 Apr; 142(16):7655-7667. PubMed ID: 32248688 [TBL] [Abstract][Full Text] [Related]
15. Reaction Dynamics of CO Loi QK; Searles DJ Langmuir; 2024 Sep; 40(35):18430-18438. PubMed ID: 39012085 [TBL] [Abstract][Full Text] [Related]
16. Size-Dependent Catalytic Activity of Monodispersed Nickel Nanoparticles for the Hydrolytic Dehydrogenation of Ammonia Borane. Guo K; Li H; Yu Z ACS Appl Mater Interfaces; 2018 Jan; 10(1):517-525. PubMed ID: 29243479 [TBL] [Abstract][Full Text] [Related]
17. Efficient Non-dissociative Activation of Dinitrogen to Ammonia over Lithium-Promoted Ruthenium Nanoparticles at Low Pressure. Zheng J; Liao F; Wu S; Jones G; Chen TY; Fellowes J; Sudmeier T; McPherson IJ; Wilkinson I; Tsang SCE Angew Chem Int Ed Engl; 2019 Nov; 58(48):17335-17341. PubMed ID: 31560158 [TBL] [Abstract][Full Text] [Related]
18. Phosphorus-Alloying as a Powerful Method for Designing Highly Active and Durable Metal Nanoparticle Catalysts for the Deoxygenation of Sulfoxides: Ligand and Ensemble Effects of Phosphorus. Ishikawa H; Yamaguchi S; Nakata A; Nakajima K; Yamazoe S; Yamasaki J; Mizugaki T; Mitsudome T JACS Au; 2022 Feb; 2(2):419-427. PubMed ID: 35252991 [TBL] [Abstract][Full Text] [Related]
19. Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles. Nilekar AU; Alayoglu S; Eichhorn B; Mavrikakis M J Am Chem Soc; 2010 Jun; 132(21):7418-28. PubMed ID: 20459102 [TBL] [Abstract][Full Text] [Related]
20. Supported gold catalysis: from small molecule activation to green chemical synthesis. Liu X; He L; Liu YM; Cao Y Acc Chem Res; 2014 Mar; 47(3):793-804. PubMed ID: 24328524 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]