These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 3001733)

  • 1. Evidence for a tyrosine protonation change during the primary phototransition of bacteriorhodopsin at low temperature.
    Rothschild KJ; Roepe P; Ahl PL; Earnest TN; Bogomolni RA; Das Gupta SK; Mulliken CM; Herzfeld J
    Proc Natl Acad Sci U S A; 1986 Jan; 83(2):347-51. PubMed ID: 3001733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tyrosine protonation changes in bacteriorhodopsin. A Fourier transform infrared study of BR548 and its primary photoproduct.
    Roepe PD; Ahl PL; Herzfeld J; Lugtenburg J; Rothschild KJ
    J Biol Chem; 1988 Apr; 263(11):5110-7. PubMed ID: 3356682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tyrosine and carboxyl protonation changes in the bacteriorhodopsin photocycle. 1. M412 and L550 intermediates.
    Roepe P; Ahl PL; Das Gupta SK; Herzfeld J; Rothschild KJ
    Biochemistry; 1987 Oct; 26(21):6696-707. PubMed ID: 3427038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tyrosine and carboxyl protonation changes in the bacteriorhodopsin photocycle. 2. Tyrosines-26 and -64.
    Roepe P; Scherrer P; Ahl PL; Das Gupta SK; Bogomolni RA; Herzfeld J; Rothschild KJ
    Biochemistry; 1987 Oct; 26(21):6708-17. PubMed ID: 3427039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared evidence that the Schiff base of bacteriorhodopsin is protonated: bR570 and K intermediates.
    Rothschild KJ; Marrero H
    Proc Natl Acad Sci U S A; 1982 Jul; 79(13):4045-9. PubMed ID: 6955790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fourier transform infrared difference spectroscopy of bacteriorhodopsin and its photoproducts regenerated with deuterated tyrosine.
    Dollinger G; Eisenstein L; Lin SL; Nakanishi K; Termini J
    Biochemistry; 1986 Oct; 25(21):6524-33. PubMed ID: 3790539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibrational spectroscopy of bacteriorhodopsin mutants: I. Tyrosine-185 protonates and deprotonates during the photocycle.
    Braiman MS; Mogi T; Stern LJ; Hackett NR; Chao BH; Khorana HG; Rothschild KJ
    Proteins; 1988; 3(4):219-29. PubMed ID: 2843849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deprotonation of tyrosines in bacteriorhodopsin as studied by Fourier transform infrared spectroscopy with deuterium and nitrate labeling.
    Lin SL; Ormos P; Eisenstein L; Govindjee R; Konno K; Nakanishi K
    Biochemistry; 1987 Dec; 26(25):8327-31. PubMed ID: 3442658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for light-induced lysine conformational changes during the primary event of the bacteriorhodopsin photocycle.
    McMaster E; Lewis A
    Biochem Biophys Res Commun; 1988 Oct; 156(1):86-91. PubMed ID: 3140817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-driven protonation changes of internal aspartic acids of bacteriorhodopsin: an investigation by static and time-resolved infrared difference spectroscopy using [4-13C]aspartic acid labeled purple membrane.
    Engelhard M; Gerwert K; Hess B; Kreutz W; Siebert F
    Biochemistry; 1985 Jan; 24(2):400-7. PubMed ID: 3978081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fourier transform infrared evidence for proline structural changes during the bacteriorhodopsin photocycle.
    Rothschild KJ; He YW; Gray D; Roepe PD; Pelletier SL; Brown RS; Herzfeld J
    Proc Natl Acad Sci U S A; 1989 Dec; 86(24):9832-5. PubMed ID: 2602377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photochemistry and fluorescence of bacteriorhodopsin excited in its 280-nm absorption band.
    Kalisky O; Feitelson J; Ottolenghi M
    Biochemistry; 1981 Jan; 20(1):205-9. PubMed ID: 7470473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-resolved ultraviolet resonance Raman studies of protein structure: application to bacteriorhodopsin.
    Ames JB; Ros M; Raap J; Lugtenburg J; Mathies RA
    Biochemistry; 1992 Jun; 31(23):5328-34. PubMed ID: 1606157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of proton pumping in bacteriorhodopsin by solid-state NMR: the protonation state of tyrosine in the light-adapted and M states.
    McDermott AE; Thompson LK; Winkel C; Farrar MR; Pelletier S; Lugtenburg J; Herzfeld J; Griffin RG
    Biochemistry; 1991 Aug; 30(34):8366-71. PubMed ID: 1653012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of amino acid substitutions in the F helix of bacteriorhodopsin. Low temperature ultraviolet/visible difference spectroscopy.
    Ahl PL; Stern LJ; Düring D; Mogi T; Khorana HG; Rothschild KJ
    J Biol Chem; 1988 Sep; 263(27):13594-601. PubMed ID: 3047127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fourier transform infrared difference spectroscopy of bacteriorhodopsin and its photoproducts.
    Bagley K; Dollinger G; Eisenstein L; Singh AK; Zimányi L
    Proc Natl Acad Sci U S A; 1982 Aug; 79(16):4972-6. PubMed ID: 6956906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primary step in the bacteriorhodopsin photocycle: photochemistry or excitation transfer?
    El-Sayed MA; Karvaly B; Fukumoto JM
    Proc Natl Acad Sci U S A; 1981 Dec; 78(12):7512-6. PubMed ID: 6278477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trans/13-cis isomerization is essential for both the photocycle and proton pumping of bacteriorhodopsin.
    Chang CH; Govindjee R; Ebrey T; Bagley KA; Dollinger G; Eisenstein L; Marque J; Roder H; Vittitow J; Fang JM
    Biophys J; 1985 Apr; 47(4):509-12. PubMed ID: 2985136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibrational spectroscopy of bacteriorhodopsin mutants: chromophore isomerization perturbs tryptophan-86.
    Rothschild KJ; Gray D; Mogi T; Marti T; Braiman MS; Stern LJ; Khorana HG
    Biochemistry; 1989 Aug; 28(17):7052-9. PubMed ID: 2819048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the conformational change in the M1 and M2 substates of bacteriorhodopsin by the combined use of visible and infrared spectroscopy.
    Perkins GA; Liu E; Burkard F; Berry EA; Glaeser RM
    J Struct Biol; 1992; 109(2):142-51. PubMed ID: 1288615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.