BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 30017582)

  • 1. Systematic Study of Nucleosome-Displacing Factors in Budding Yeast.
    Yan C; Chen H; Bai L
    Mol Cell; 2018 Jul; 71(2):294-305.e4. PubMed ID: 30017582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reb1, Cbf1, and Pho4 Bias Histone Sliding and Deposition Away from Their Binding Sites.
    Ghassabi Kondalaji S; Bowman GD
    Mol Cell Biol; 2022 Feb; 42(2):e0047221. PubMed ID: 34898278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partitioned usage of chromatin remodelers by nucleosome-displacing factors.
    Chen H; Kharerin H; Dhasarathy A; Kladde M; Bai L
    Cell Rep; 2022 Aug; 40(8):111250. PubMed ID: 36001970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissociation rate compensation mechanism for budding yeast pioneer transcription factors.
    Donovan BT; Chen H; Jipa C; Bai L; Poirier MG
    Elife; 2019 Mar; 8():. PubMed ID: 30888317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic Investigation of Transcription Factor Activity in the Context of Chromatin Using Massively Parallel Binding and Expression Assays.
    Levo M; Avnit-Sagi T; Lotan-Pompan M; Kalma Y; Weinberger A; Yakhini Z; Segal E
    Mol Cell; 2017 Feb; 65(4):604-617.e6. PubMed ID: 28212748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric nucleosomes flank promoters in the budding yeast genome.
    Ramachandran S; Zentner GE; Henikoff S
    Genome Res; 2015 Mar; 25(3):381-90. PubMed ID: 25491770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA sequence preferences of transcriptional activators correlate more strongly than repressors with nucleosomes.
    Charoensawan V; Janga SC; Bulyk ML; Babu MM; Teichmann SA
    Mol Cell; 2012 Jul; 47(2):183-92. PubMed ID: 22841002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleosome free regions in yeast promoters result from competitive binding of transcription factors that interact with chromatin modifiers.
    Ozonov EA; van Nimwegen E
    PLoS Comput Biol; 2013; 9(8):e1003181. PubMed ID: 23990766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global nucleosome occupancy in yeast.
    Bernstein BE; Liu CL; Humphrey EL; Perlstein EO; Schreiber SL
    Genome Biol; 2004; 5(9):R62. PubMed ID: 15345046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting nucleosome positioning using statistical equilibrium models in budding yeast.
    Kharerin H; Bai L
    STAR Protoc; 2023 Mar; 4(1):101926. PubMed ID: 36520634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleosome organization in the vicinity of transcription factor binding sites in the human genome.
    Nie Y; Cheng X; Chen J; Sun X
    BMC Genomics; 2014 Jun; 15(1):493. PubMed ID: 24942981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functions of FACT in Breaking the Nucleosome and Maintaining Its Integrity at the Single-Nucleosome Level.
    Chen P; Dong L; Hu M; Wang YZ; Xiao X; Zhao Z; Yan J; Wang PY; Reinberg D; Li M; Li W; Li G
    Mol Cell; 2018 Jul; 71(2):284-293.e4. PubMed ID: 30029006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basic helix-loop-helix pioneer factors interact with the histone octamer to invade nucleosomes and generate nucleosome-depleted regions.
    Donovan BT; Chen H; Eek P; Meng Z; Jipa C; Tan S; Bai L; Poirier MG
    Mol Cell; 2023 Apr; 83(8):1251-1263.e6. PubMed ID: 36996811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin mediation of a transcriptional memory effect in yeast.
    Paul E; Tirosh I; Lai W; Buck MJ; Palumbo MJ; Morse RH
    G3 (Bethesda); 2015 Mar; 5(5):829-38. PubMed ID: 25748434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonspecific transcription-factor-DNA binding influences nucleosome occupancy in yeast.
    Afek A; Sela I; Musa-Lempel N; Lukatsky DB
    Biophys J; 2011 Nov; 101(10):2465-75. PubMed ID: 22098745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of nucleosome binding preferences and co-occurring DNA sequences to transcription factor binding.
    He X; Chatterjee R; John S; Bravo H; Sathyanarayana BK; Biddie SC; FitzGerald PC; Stamatoyannopoulos JA; Hager GL; Vinson C
    BMC Genomics; 2013 Jun; 14():428. PubMed ID: 23805837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zelda overcomes the high intrinsic nucleosome barrier at enhancers during Drosophila zygotic genome activation.
    Sun Y; Nien CY; Chen K; Liu HY; Johnston J; Zeitlinger J; Rushlow C
    Genome Res; 2015 Nov; 25(11):1703-14. PubMed ID: 26335633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gal4p-mediated chromatin remodeling depends on binding site position in nucleosomes but does not require DNA replication.
    Xu M; Simpson RT; Kladde MP
    Mol Cell Biol; 1998 Mar; 18(3):1201-12. PubMed ID: 9488435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blurring of high-resolution data shows that the effect of intrinsic nucleosome occupancy on transcription factor binding is mostly regional, not local.
    Goh WS; Orlov Y; Li J; Clarke ND
    PLoS Comput Biol; 2010 Jan; 6(1):e1000649. PubMed ID: 20098497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific local histone-DNA sequence contacts facilitate high-affinity, non-cooperative nucleosome binding of both adf-1 and GAGA factor.
    Gao J; Benyajati C
    Nucleic Acids Res; 1998 Dec; 26(23):5394-401. PubMed ID: 9826764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.