These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 30017654)

  • 1. The contributions of individual galactosyltransferases to protein specific N-glycan processing in Chinese Hamster Ovary cells.
    Bydlinski N; Maresch D; Schmieder V; Klanert G; Strasser R; Borth N
    J Biotechnol; 2018 Sep; 282():101-110. PubMed ID: 30017654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chinese hamster ovary (CHO) cells may express six beta 4-galactosyltransferases (beta 4GalTs). Consequences of the loss of functional beta 4GalT-1, beta 4GalT-6, or both in CHO glycosylation mutants.
    Lee J; Sundaram S; Shaper NL; Raju TS; Stanley P
    J Biol Chem; 2001 Apr; 276(17):13924-34. PubMed ID: 11278604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of intact glycopeptides reveals the impact of culture media on site-specific glycosylation of EPO-Fc fusion protein generated by CHO-GS cells.
    Wang Q; Yang G; Wang T; Yang W; Betenbaugh MJ; Zhang H
    Biotechnol Bioeng; 2019 Sep; 116(9):2303-2315. PubMed ID: 31062865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding of decreased sialylation of Fc-fusion protein in hyperosmotic recombinant Chinese hamster ovary cell culture: N-glycosylation gene expression and N-linked glycan antennary profile.
    Lee JH; Jeong YR; Kim YG; Lee GM
    Biotechnol Bioeng; 2017 Aug; 114(8):1721-1732. PubMed ID: 28266015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering challenges of extending N-glycan pathways in Chinese hamster ovary cells.
    Wang Q; Wang T; Yang S; Sha S; Wu WW; Chen Y; Paul JT; Shen RF; Cipollo JF; Betenbaugh MJ
    Metab Eng; 2020 Sep; 61():301-314. PubMed ID: 32663509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9-Multiplexed Editing of Chinese Hamster Ovary B4Gal-T1, 2, 3, and 4 Tailors N-Glycan Profiles of Therapeutics and Secreted Host Cell Proteins.
    Amann T; Hansen AH; Kol S; Lee GM; Andersen MR; Kildegaard HF
    Biotechnol J; 2018 Oct; 13(10):e1800111. PubMed ID: 29862652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycoengineering of Chinese hamster ovary cells for enhanced erythropoietin N-glycan branching and sialylation.
    Yin B; Gao Y; Chung CY; Yang S; Blake E; Stuczynski MC; Tang J; Kildegaard HF; Andersen MR; Zhang H; Betenbaugh MJ
    Biotechnol Bioeng; 2015 Nov; 112(11):2343-51. PubMed ID: 26154505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering β1,4-galactosyltransferase I to reduce secretion and enhance N-glycan elongation in insect cells.
    Geisler C; Mabashi-Asazuma H; Kuo CW; Khoo KH; Jarvis DL
    J Biotechnol; 2015 Jan; 193():52-65. PubMed ID: 25462875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycosylation flux analysis reveals dynamic changes of intracellular glycosylation flux distribution in Chinese hamster ovary fed-batch cultures.
    Hutter S; Villiger TK; Brühlmann D; Stettler M; Broly H; Soos M; Gunawan R
    Metab Eng; 2017 Sep; 43(Pt A):9-20. PubMed ID: 28754360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study on enhanced O-glycosylation strategy for improved production of recombinant human chorionic gonadotropin in Chinese hamster ovary cells.
    Deng Z; Yi X; Chu J; Zhuang Y
    J Biotechnol; 2019 Dec; 306():159-168. PubMed ID: 31604106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Galactosylation of human erythropoietin produced by chimeric chickens expressing galactosyltransferase.
    Kojima Y; Wakita J; Inayoshi Y; Suzuki R; Yamada Y; Kaneoka H; Nishijima K; Iijima S
    J Biosci Bioeng; 2014 Jun; 117(6):676-9. PubMed ID: 24355574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining Butyrated ManNAc with Glycoengineered CHO Cells Improves EPO Glycan Quality and Production.
    Wang Q; Chung CY; Yang W; Yang G; Chough S; Chen Y; Yin B; Bhattacharya R; Hu Y; Saeui CT; Yarema KJ; Betenbaugh MJ; Zhang H
    Biotechnol J; 2019 Apr; 14(4):e1800186. PubMed ID: 30221828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycosylation characterization of recombinant human erythropoietin produced in glycoengineered Pichia pastoris by mass spectrometry.
    Gong B; Burnina I; Stadheim TA; Li H
    J Mass Spectrom; 2013 Dec; 48(12):1308-17. PubMed ID: 24338886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model-based analysis of N-glycosylation in Chinese hamster ovary cells.
    Krambeck FJ; Bennun SV; Andersen MR; Betenbaugh MJ
    PLoS One; 2017; 12(5):e0175376. PubMed ID: 28486471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Down-regulation of the epidermal growth factor receptor by altering N-glycosylation: emerging role of β1,4-galactosyltransferases.
    Gabius HJ; van de Wouwer M; André S; Villalobo A
    Anticancer Res; 2012 May; 32(5):1565-72. PubMed ID: 22593433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model-Driven Engineering of N-Linked Glycosylation in Chinese Hamster Ovary Cells.
    Stach CS; McCann MG; O'Brien CM; Le TS; Somia N; Chen X; Lee K; Fu HY; Daoutidis P; Zhao L; Hu WS; Smanski M
    ACS Synth Biol; 2019 Nov; 8(11):2524-2535. PubMed ID: 31596566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring cellular behavior under transient gene expression and its impact on mAb productivity and Fc-glycosylation.
    Sou SN; Lee K; Nayyar K; Polizzi KM; Sellick C; Kontoravdi C
    Biotechnol Bioeng; 2018 Feb; 115(2):512-518. PubMed ID: 28921534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unusual N-glycosylation of a recombinant human erythropoietin expressed in a human lymphoblastoid cell line does not alter its biological properties.
    Cointe D; Béliard R; Jorieux S; Leroy Y; Glacet A; Verbert A; Bourel D; Chirat F
    Glycobiology; 2000 May; 10(5):511-9. PubMed ID: 10764840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The GalNAc-type O-Glycoproteome of CHO cells characterized by the SimpleCell strategy.
    Yang Z; Halim A; Narimatsu Y; Jitendra Joshi H; Steentoft C; Schjoldager KT; Alder Schulz M; Sealover NR; Kayser KJ; Paul Bennett E; Levery SB; Vakhrushev SY; Clausen H
    Mol Cell Proteomics; 2014 Dec; 13(12):3224-35. PubMed ID: 25092905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-glycosylation of the human β1,4-galactosyltransferase 4 is crucial for its activity and Golgi localization.
    Shauchuk A; Szulc B; Maszczak-Seneczko D; Wiertelak W; Skurska E; Olczak M
    Glycoconj J; 2020 Oct; 37(5):577-588. PubMed ID: 32827291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.