These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 30017857)
1. Comparative analysis of the immune system of an invasive bark beetle, Dendroctonus valens, infected by an entomopathogenic fungus. Xu L; Zhang Y; Zhang S; Deng J; Lu M; Zhang L; Zhang J Dev Comp Immunol; 2018 Nov; 88():65-69. PubMed ID: 30017857 [TBL] [Abstract][Full Text] [Related]
2. Modeling the pest-pathogen threats in a warming world for the red turpentine beetle (Dendroctonus valens) and its symbiotic fungus (Leptographium procerum). Zhou Y; Guo S; Wang T; Zong S; Ge X Pest Manag Sci; 2024 Jul; 80(7):3423-3435. PubMed ID: 38407566 [TBL] [Abstract][Full Text] [Related]
3. Mutual interactions between an invasive bark beetle and its associated fungi. Wang B; Salcedo C; Lu M; Sun J Bull Entomol Res; 2012 Feb; 102(1):71-7. PubMed ID: 21777500 [TBL] [Abstract][Full Text] [Related]
4. Differential immune responses of Monochamus alternatus against symbiotic and entomopathogenic fungi. Zhang W; Meng J; Ning J; Qin P; Zhou J; Zou Z; Wang Y; Jiang H; Ahmad F; Zhao L; Sun J Sci China Life Sci; 2017 Aug; 60(8):902-910. PubMed ID: 28762123 [TBL] [Abstract][Full Text] [Related]
5. Ophiostomatoid fungi (Ascomycota) associated with Pinus tabuliformis infested by Dendroctonus valens (Coleoptera) in northern China and an assessment of their pathogenicity on mature trees. Lu Q; Decock C; Zhang XY; Maraite H Antonie Van Leeuwenhoek; 2009 Oct; 96(3):275-93. PubMed ID: 19404768 [TBL] [Abstract][Full Text] [Related]
6. An invasive beetle-fungus complex is maintained by fungal nutritional-compensation mediated by bacterial volatiles. Liu F; Wickham JD; Cao Q; Lu M; Sun J ISME J; 2020 Nov; 14(11):2829-2842. PubMed ID: 32814865 [TBL] [Abstract][Full Text] [Related]
8. High throughput profiling of the cotton bollworm Helicoverpa armigera immunotranscriptome during the fungal and bacterial infections. Xiong GH; Xing LS; Lin Z; Saha TT; Wang C; Jiang H; Zou Z BMC Genomics; 2015 Apr; 16(1):321. PubMed ID: 26001831 [TBL] [Abstract][Full Text] [Related]
9. Temporospatial modulation of Lymantria dispar immune system against an entomopathogenic fungal infection. Bai J; Xu Z; Li L; Ma W; Xu L; Ma L Pest Manag Sci; 2020 Dec; 76(12):3982-3989. PubMed ID: 32506667 [TBL] [Abstract][Full Text] [Related]
10. Taxonomy and phylogeny of the Leptographium procerum complex, including Leptographium sinense sp. nov. and Leptographium longiconidiophorum sp. nov. Yin M; Duong TA; Wingfield MJ; Zhou X; de Beer ZW Antonie Van Leeuwenhoek; 2015 Feb; 107(2):547-63. PubMed ID: 25510728 [TBL] [Abstract][Full Text] [Related]
11. Selection of entomopathogenic fungus Beauveria bassiana (Deuteromycotina: Hyphomycetes) for the biocontrol of Dendroctonus ponderosae (Coleoptera: Curculionidae, Scolytinae) in Western Canada. Rosana ARR; Pokorny S; Klutsch JG; Ibarra-Romero C; Sanichar R; Engelhardt D; van Belkum MJ; Erbilgin N; Bohlmann J; Carroll AL; Vederas JC Appl Microbiol Biotechnol; 2021 Mar; 105(6):2541-2557. PubMed ID: 33590267 [TBL] [Abstract][Full Text] [Related]
12. Bacterial volatile ammonia regulates the consumption sequence of d-pinitol and d-glucose in a fungus associated with an invasive bark beetle. Zhou F; Xu L; Wang S; Wang B; Lou Q; Lu M; Sun J ISME J; 2017 Dec; 11(12):2809-2820. PubMed ID: 28800134 [TBL] [Abstract][Full Text] [Related]
13. Leptographium sinoprocerum sp. nov., an undescribed species associated with Pinus tabuliformis-Dendroctonus valens in northern China. Lu Q; Decock C; Zhang XY; Maraite H Mycologia; 2008; 100(2):275-90. PubMed ID: 18592901 [TBL] [Abstract][Full Text] [Related]
14. Do novel genotypes drive the success of an invasive bark beetle-fungus complex? Implications for potential reinvasion. Lu M; Wingfield MJ; Gillette N; Sun JH Ecology; 2011 Nov; 92(11):2013-9. PubMed ID: 22164824 [TBL] [Abstract][Full Text] [Related]
15. Large shift in symbiont assemblage in the invasive red turpentine beetle. Taerum SJ; Duong TA; de Beer ZW; Gillette N; Sun JH; Owen DR; Wingfield MJ PLoS One; 2013; 8(10):e78126. PubMed ID: 24205124 [TBL] [Abstract][Full Text] [Related]
16. Complex interactions among host pines and fungi vectored by an invasive bark beetle. Lu M; Wingfield MJ; Gillette NE; Mori SR; Sun JH New Phytol; 2010 Aug; 187(3):859-66. PubMed ID: 20546136 [TBL] [Abstract][Full Text] [Related]
17. Inducible pine rosin defense mediates interactions between an invasive insect-fungal complex and newly acquired sympatric fungal associates. Cheng C; Zhou F; Lu M; Sun J Integr Zool; 2015 Sep; 10(5):453-64. PubMed ID: 25939920 [TBL] [Abstract][Full Text] [Related]
19. Identification of immunity-related genes in Ostrinia furnacalis against entomopathogenic fungi by RNA-seq analysis. Liu Y; Shen D; Zhou F; Wang G; An C PLoS One; 2014; 9(1):e86436. PubMed ID: 24466095 [TBL] [Abstract][Full Text] [Related]
20. The Aedes aegypti IMD pathway is a critical component of the mosquito antifungal immune response. Ramirez JL; Muturi EJ; Barletta ABF; Rooney AP Dev Comp Immunol; 2019 Jun; 95():1-9. PubMed ID: 30582948 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]