BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 30017885)

  • 1. Freeze-Drying From Organic Co-Solvent Systems, Part 2: Process Modifications to Reduce Residual Solvent Levels and Improve Product Quality Attributes.
    Kunz C; Schuldt-Lieb S; Gieseler H
    J Pharm Sci; 2019 Jan; 108(1):399-415. PubMed ID: 30017885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freeze-Drying From Organic Cosolvent Systems, Part 1: Thermal Analysis of Cosolvent-Based Placebo Formulations in the Frozen State.
    Kunz C; Schuldt-Lieb S; Gieseler H
    J Pharm Sci; 2018 Mar; 107(3):887-896. PubMed ID: 29133233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freeze-drying of tert-butanol/water cosolvent systems: a case report on formation of a friable freeze-dried powder of tobramycin sulfate.
    Wittaya-Areekul S; Needham GF; Milton N; Roy ML; Nail SL
    J Pharm Sci; 2002 Apr; 91(4):1147-55. PubMed ID: 11948553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Freeze-drying of tert-butyl alcohol/water cosolvent systems: effects of formulation and process variables on residual solvents.
    Wittaya-Areekul S; Nail SL
    J Pharm Sci; 1998 Apr; 87(4):491-5. PubMed ID: 9548903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Practical aspects of lyophilization using non-aqueous co-solvent systems.
    Teagarden DL; Baker DS
    Eur J Pharm Sci; 2002 Mar; 15(2):115-33. PubMed ID: 11849908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formulation Screening and Freeze-Drying Process Optimization of Ginkgolide B Lyophilized Powder for Injection.
    Liu D; Galvanin F; Yu Y
    AAPS PharmSciTech; 2018 Feb; 19(2):541-550. PubMed ID: 28849380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors Influencing the Retention of Organic Solvents in Products Freeze-Dried From Co-Solvent Systems.
    Kunz C; Gieseler H
    J Pharm Sci; 2018 Aug; 107(8):2005-2012. PubMed ID: 29649470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Freezing on Lyophilization Process Performance and Drug Product Cake Appearance.
    Esfandiary R; Gattu SK; Stewart JM; Patel SM
    J Pharm Sci; 2016 Apr; 105(4):1427-33. PubMed ID: 27019959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystallization of cephalothin sodium during lyophilization from tert-butyl alcohol-water cosolvent system.
    Telang C; Suryanarayanan R
    Pharm Res; 2005 Jan; 22(1):153-60. PubMed ID: 15771242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freeze-Drying of L-Arginine/Sucrose-Based Protein Formulations, Part 2: Optimization of Formulation Design and Freeze-Drying Process Conditions for an L-Arginine Chloride-Based Protein Formulation System.
    Stärtzel P; Gieseler H; Gieseler M; Abdul-Fattah AM; Adler M; Mahler HC; Goldbach P
    J Pharm Sci; 2015 Dec; 104(12):4241-4256. PubMed ID: 26422647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nonsteady state modeling of freeze drying: in-process product temperature and moisture content mapping and pharmaceutical product quality applications.
    Pikal MJ; Cardon S; Bhugra C; Jameel F; Rambhatla S; Mascarenhas WJ; Akay HU
    Pharm Dev Technol; 2005; 10(1):17-32. PubMed ID: 15776810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of controlled ice nucleation on primary drying stage and protein recovery in vials cooled in a modified freeze-dryer.
    Passot S; Tréléa IC; Marin M; Galan M; Morris GJ; Fonseca F
    J Biomech Eng; 2009 Jul; 131(7):074511. PubMed ID: 19640147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freeze-drying using vacuum-induced surface freezing.
    Kramer M; Sennhenn B; Lee G
    J Pharm Sci; 2002 Feb; 91(2):433-43. PubMed ID: 11835203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled nucleation in freeze-drying: effects on pore size in the dried product layer, mass transfer resistance, and primary drying rate.
    Konstantinidis AK; Kuu W; Otten L; Nail SL; Sever RR
    J Pharm Sci; 2011 Aug; 100(8):3453-3470. PubMed ID: 21465488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of Two Different Pressure-Based Controlled Ice Nucleation Techniques in Freeze-Drying: The Integral Role of Shelf Temperature After Nucleation in Process Performance and Product Quality.
    Wenzel T; Gieseler M; Gieseler H
    J Pharm Sci; 2020 Sep; 109(9):2746-2756. PubMed ID: 32497596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights from a Thermodynamic Study and Its Implications on the Freeze-Drying of Pharmaceutical Solutions Containing Water and
    Wang JC; Bruttini R; Liapis AI
    PDA J Pharm Sci Technol; 2019; 73(3):247-259. PubMed ID: 30651336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spray freezing into liquid (SFL) particle engineering technology to enhance dissolution of poorly water soluble drugs: organic solvent versus organic/aqueous co-solvent systems.
    Hu J; Johnston KP; Williams RO
    Eur J Pharm Sci; 2003 Nov; 20(3):295-303. PubMed ID: 14592695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein purification process engineering. Freeze drying: A practical overview.
    Gatlin LA; Nail SL
    Bioprocess Technol; 1994; 18():317-67. PubMed ID: 7764173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced aqueous dissolution of a poorly water soluble drug by novel particle engineering technology: spray-freezing into liquid with atmospheric freeze-drying.
    Rogers TL; Nelsen AC; Sarkari M; Young TJ; Johnston KP; Williams RO
    Pharm Res; 2003 Mar; 20(3):485-93. PubMed ID: 12669973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrated process analytical technology (PAT) approach to monitoring the effect of supercooling on lyophilization product and process parameters of model monoclonal antibody formulations.
    Awotwe Otoo D; Agarabi C; Khan MA
    J Pharm Sci; 2014 Jul; 103(7):2042-2052. PubMed ID: 24840395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.