These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 30018140)
1. "Mallostery"-ligand-dependent protein misfolding enables physiological regulation by ERAD. Wangeline MA; Hampton RY J Biol Chem; 2018 Sep; 293(38):14937-14950. PubMed ID: 30018140 [TBL] [Abstract][Full Text] [Related]
2. An autonomous, but INSIG-modulated, role for the sterol sensing domain in mallostery-regulated ERAD of yeast HMG-CoA reductase. Wangeline MA; Hampton RY J Biol Chem; 2021; 296():100063. PubMed ID: 33184059 [TBL] [Abstract][Full Text] [Related]
3. Insulin-induced gene protein (INSIG)-dependent sterol regulation of Hmg2 endoplasmic reticulum-associated degradation (ERAD) in yeast. Theesfeld CL; Hampton RY J Biol Chem; 2013 Mar; 288(12):8519-8530. PubMed ID: 23306196 [TBL] [Abstract][Full Text] [Related]
5. Geranylgeranyl pyrophosphate is a potent regulator of HRD-dependent 3-Hydroxy-3-methylglutaryl-CoA reductase degradation in yeast. Garza RM; Tran PN; Hampton RY J Biol Chem; 2009 Dec; 284(51):35368-80. PubMed ID: 19776008 [TBL] [Abstract][Full Text] [Related]
6. UbiA prenyltransferase domain-containing protein-1 modulates HMG-CoA reductase degradation to coordinate synthesis of sterol and nonsterol isoprenoids. Schumacher MM; Jun DJ; Johnson BM; DeBose-Boyd RA J Biol Chem; 2018 Jan; 293(1):312-323. PubMed ID: 29167270 [TBL] [Abstract][Full Text] [Related]
7. Posttranslational Regulation of HMG CoA Reductase, the Rate-Limiting Enzyme in Synthesis of Cholesterol. Schumacher MM; DeBose-Boyd RA Annu Rev Biochem; 2021 Jun; 90():659-679. PubMed ID: 34153214 [TBL] [Abstract][Full Text] [Related]
8. In vivo action of the HRD ubiquitin ligase complex: mechanisms of endoplasmic reticulum quality control and sterol regulation. Gardner RG; Shearer AG; Hampton RY Mol Cell Biol; 2001 Jul; 21(13):4276-91. PubMed ID: 11390656 [TBL] [Abstract][Full Text] [Related]
9. Type 1 polyisoprenoid diphosphate phosphatase modulates geranylgeranyl-mediated control of HMG CoA reductase and UBIAD1. Elsabrouty R; Jo Y; Hwang S; Jun DJ; DeBose-Boyd RA Elife; 2021 Nov; 10():. PubMed ID: 34842525 [TBL] [Abstract][Full Text] [Related]
10. Structural control of endoplasmic reticulum-associated degradation: effect of chemical chaperones on 3-hydroxy-3-methylglutaryl-CoA reductase. Shearer AG; Hampton RY J Biol Chem; 2004 Jan; 279(1):188-96. PubMed ID: 14570925 [TBL] [Abstract][Full Text] [Related]
11. Geranylgeranyl-regulated transport of the prenyltransferase UBIAD1 between membranes of the ER and Golgi. Schumacher MM; Jun DJ; Jo Y; Seemann J; DeBose-Boyd RA J Lipid Res; 2016 Jul; 57(7):1286-99. PubMed ID: 27121042 [TBL] [Abstract][Full Text] [Related]
12. Post-Translational Regulation of HMG CoA Reductase. Jo Y; DeBose-Boyd RA Cold Spring Harb Perspect Biol; 2022 Dec; 14(12):. PubMed ID: 35940903 [TBL] [Abstract][Full Text] [Related]
13. Hmg-coA reductase gene family in cotton (Gossypium hirsutum L.): unique structural features and differential expression of hmg2 potentially associated with synthesis of specific isoprenoids in developing embryos. Loguercio LL; Scott HC; Trolinder NL; Wilkins TA Plant Cell Physiol; 1999 Jul; 40(7):750-61. PubMed ID: 10501034 [TBL] [Abstract][Full Text] [Related]
14. Schnyder corneal dystrophy-associated UBIAD1 inhibits ER-associated degradation of HMG CoA reductase in mice. Jo Y; Hamilton JS; Hwang S; Garland K; Smith GA; Su S; Fuentes I; Neelam S; Thompson BM; McDonald JG; DeBose-Boyd RA Elife; 2019 Feb; 8():. PubMed ID: 30785396 [TBL] [Abstract][Full Text] [Related]
15. Underlying mechanisms for sterol-induced ubiquitination and ER-associated degradation of HMG CoA reductase. Johnson BM; DeBose-Boyd RA Semin Cell Dev Biol; 2018 Sep; 81():121-128. PubMed ID: 29107682 [TBL] [Abstract][Full Text] [Related]