These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 30018569)

  • 1. Every Breath You Take: Non-invasive Real-Time Oxygen Biosensing in Two- and Three-Dimensional Microfluidic Cell Models.
    Zirath H; Rothbauer M; Spitz S; Bachmann B; Jordan C; Müller B; Ehgartner J; Priglinger E; Mühleder S; Redl H; Holnthoner W; Harasek M; Mayr T; Ertl P
    Front Physiol; 2018; 9():815. PubMed ID: 30018569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic organ-on-chip system for multi-analyte monitoring of metabolites in 3D cell cultures.
    Dornhof J; Kieninger J; Muralidharan H; Maurer J; Urban GA; Weltin A
    Lab Chip; 2022 Jan; 22(2):225-239. PubMed ID: 34851349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compartmentalized organ-on-a-chip structure for spatiotemporal control of oxygen microenvironments.
    Tornberg K; Välimäki H; Valaskivi S; Mäki AJ; Jokinen M; Kreutzer J; Kallio P
    Biomed Microdevices; 2022 Oct; 24(4):34. PubMed ID: 36269438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid spheroid clearing on a microfluidic chip.
    Silva Santisteban T; Rabajania O; Kalinina I; Robinson S; Meier M
    Lab Chip; 2017 Dec; 18(1):153-161. PubMed ID: 29192297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study Hypoxic Response under Cyclic Oxygen Gradients Generated in Microfluidic Devices Using Real-Time Fluorescence Imaging.
    Chang DM; Tung YC
    Biosensors (Basel); 2022 Nov; 12(11):. PubMed ID: 36421149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel microfluidic platform for high-resolution imaging of a three-dimensional cell culture under a controlled hypoxic environment.
    Funamoto K; Zervantonakis IK; Liu Y; Ochs CJ; Kim C; Kamm RD
    Lab Chip; 2012 Nov; 12(22):4855-63. PubMed ID: 23023115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface modifications of COP-based microfluidic devices for improved immobilisation of hydrogel proteins: long-term 3D culture with contractile cell types and ischaemia model.
    González-Lana S; Randelovic T; Ciriza J; López-Valdeolivas M; Monge R; Sánchez-Somolinos C; Ochoa I
    Lab Chip; 2023 May; 23(10):2434-2446. PubMed ID: 37013698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study 3D Endothelial Cell Network Formation under Various Oxygen Microenvironment and Hydrogel Composition Combinations Using Upside-Down Microfluidic Devices.
    Hsu HH; Ko PL; Wu HM; Lin HC; Wang CK; Tung YC
    Small; 2021 Apr; 17(15):e2006091. PubMed ID: 33480473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microsensor systems for cell metabolism - from 2D culture to organ-on-chip.
    Kieninger J; Weltin A; Flamm H; Urban GA
    Lab Chip; 2018 May; 18(9):1274-1291. PubMed ID: 29619452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microfluidic optical platform for real-time monitoring of pH and oxygen in microfluidic bioreactors and organ-on-chip devices.
    Mousavi Shaegh SA; De Ferrari F; Zhang YS; Nabavinia M; Binth Mohammad N; Ryan J; Pourmand A; Laukaitis E; Banan Sadeghian R; Nadhman A; Shin SR; Nezhad AS; Khademhosseini A; Dokmeci MR
    Biomicrofluidics; 2016 Jul; 10(4):044111. PubMed ID: 27648113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Characterization of a Sensorized Microfluidic Cell-Culture System with Electro-Thermal Micro-Pumps and Sensors for Cell Adhesion, Oxygen, and pH on a Glass Chip.
    Bonk SM; Stubbe M; Buehler SM; Tautorat C; Baumann W; Klinkenberg ED; Gimsa J
    Biosensors (Basel); 2015 Jul; 5(3):513-36. PubMed ID: 26263849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen Management at the Microscale: A Functional Biochip Material with Long-Lasting and Tunable Oxygen Scavenging Properties for Cell Culture Applications.
    Sticker D; Rothbauer M; Ehgartner J; Steininger C; Liske O; Liska R; Neuhaus W; Mayr T; Haraldsson T; Kutter JP; Ertl P
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):9730-9739. PubMed ID: 30747515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture.
    Mehta G; Mehta K; Sud D; Song JW; Bersano-Begey T; Futai N; Heo YS; Mycek MA; Linderman JJ; Takayama S
    Biomed Microdevices; 2007 Apr; 9(2):123-34. PubMed ID: 17160707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal pattern of glucose in a microfluidic device depend on the porosity and permeability of the medium: A finite element study.
    Bonifácio ED; González-Torres LA; Meireles AB; Guimarães MV; Araujo CA
    Comput Methods Programs Biomed; 2019 Dec; 182():105039. PubMed ID: 31472476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Online oxygen monitoring using integrated inkjet-printed sensors in a liver-on-a-chip system.
    Moya A; Ortega-Ribera M; Guimerà X; Sowade E; Zea M; Illa X; Ramon E; Villa R; Gracia-Sancho J; Gabriel G
    Lab Chip; 2018 Jul; 18(14):2023-2035. PubMed ID: 29892739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A web-based application for automated quantification of chemical gradients induced in microfluidic devices.
    Cóndor M; Rüberg T; Borau C; Piles J; García-Aznar JM
    Comput Biol Med; 2018 Apr; 95():118-128. PubMed ID: 29494849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementing oxygen control in chip-based cell and tissue culture systems.
    Oomen PE; Skolimowski MD; Verpoorte E
    Lab Chip; 2016 Sep; 16(18):3394-414. PubMed ID: 27492338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polydimethylsiloxane-polycarbonate Microfluidic Devices for Cell Migration Studies Under Perpendicular Chemical and Oxygen Gradients.
    Chiang HJ; Yeh SL; Peng CC; Liao WH; Tung YC
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterning Biological Gels for 3D Cell Culture inside Microfluidic Devices by Local Surface Modification through Laminar Flow Patterning.
    Loessberg-Zahl J; Beumer J; van den Berg A; Eijkel JCT; van der Meer AD
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33339092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Tumor-on-Chip: Recent Advances in the Development of Microfluidic Systems to Recapitulate the Physiology of Solid Tumors.
    Trujillo-de Santiago G; Flores-Garza BG; Tavares-Negrete JA; Lara-Mayorga IM; González-Gamboa I; Zhang YS; Rojas-Martínez A; Ortiz-López R; Álvarez MM
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31514390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.