These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30018695)

  • 1. Flow-induced deformation in a microchannel with a non-Newtonian fluid.
    Raj M K; Chakraborty J; DasGupta S; Chakraborty S
    Biomicrofluidics; 2018 May; 12(3):034116. PubMed ID: 30018695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variations in pulsatile flow around stenosed microchannel depending on viscosity.
    Hong H; Song JM; Yeom E
    PLoS One; 2019; 14(1):e0210993. PubMed ID: 30677055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic pulsatile flows through flexible microfluidic conduits.
    M KR; DasGupta S; Chakraborty S
    Biomicrofluidics; 2019 Jan; 13(1):014103. PubMed ID: 30867874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro flow study in a compliant abdominal aorta phantom with a non-Newtonian blood-mimicking fluid.
    Moravia A; Simoëns S; El Hajem M; Bou-Saïd B; Kulisa P; Della-Schiava N; Lermusiaux P
    J Biomech; 2022 Jan; 130():110899. PubMed ID: 34923186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extensional flow of blood analog solutions in microfluidic devices.
    Sousa PC; Pinho FT; Oliveira MS; Alves MA
    Biomicrofluidics; 2011 Mar; 5(1):14108. PubMed ID: 21483662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the characterization of a non-Newtonian blood analog and its response to pulsatile flow downstream of a simplified stenosis.
    Walker AM; Johnston CR; Rival DE
    Ann Biomed Eng; 2014 Jan; 42(1):97-109. PubMed ID: 23975383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The characterization of a non-Newtonian blood analog in natural- and shear-layer-induced transitional flow.
    Li L; Walker AM; Rival DE
    Biorheology; 2014; 51(4-5):275-91. PubMed ID: 25281596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The quantification of hemodynamic parameters downstream of a Gianturco Zenith stent wire using newtonian and non-newtonian analog fluids in a pulsatile flow environment.
    Walker AM; Johnston CR; Rival DE
    J Biomech Eng; 2012 Nov; 134(11):111001. PubMed ID: 23387783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Flow-Induced Microfluidic Chip Wall Deformation on Imaging Flow Cytometry.
    Yalikun Y; Ota N; Guo B; Tang T; Zhou Y; Lei C; Kobayashi H; Hosokawa Y; Li M; Enrique Muñoz H; Di Carlo D; Goda K; Tanaka Y
    Cytometry A; 2020 Sep; 97(9):909-920. PubMed ID: 31856398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elastic instabilities in the electroosmotic flow of non-Newtonian fluids through T-shaped microchannels.
    Song L; Yu L; Li D; Jagdale PP; Xuan X
    Electrophoresis; 2020 Apr; 41(7-8):588-597. PubMed ID: 31786811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental Investigation of the Effect of Non-Newtonian Behavior of Blood Flow in the Fontan Circulation.
    Cheng AL; Pahlevan NM; Rinderknecht DG; Wood JC; Gharib M
    Eur J Mech B Fluids; 2018; 68():184-192. PubMed ID: 29736127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.
    Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T
    Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid-Liquid Flows with Non-Newtonian Dispersed Phase in a T-Junction Microchannel.
    Yagodnitsyna A; Kovalev A; Bilsky A
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33809906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow of Non-Newtonian Fluids in a Single-Cavity Microchannel.
    Raihan MK; Jagdale PP; Wu S; Shao X; Bostwick JB; Pan X; Xuan X
    Micromachines (Basel); 2021 Jul; 12(7):. PubMed ID: 34357246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AC electric field controlled non-Newtonian filament thinning and droplet formation on the microscale.
    Huang Y; Wang YL; Wong TN
    Lab Chip; 2017 Aug; 17(17):2969-2981. PubMed ID: 28745766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental investigation of the flow of a blood analogue fluid in a replica of a bifurcated small artery.
    Anastasiou AD; Spyrogianni AS; Koskinas KC; Giannoglou GD; Paras SV
    Med Eng Phys; 2012 Mar; 34(2):211-8. PubMed ID: 21824798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of the effect of stenosis severity and non-Newtonian viscosity on multidirectional wall shear stress and flow disturbances in the carotid artery using particle image velocimetry.
    DiCarlo AL; Holdsworth DW; Poepping TL
    Med Eng Phys; 2019 Mar; 65():8-23. PubMed ID: 30745099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system.
    Mehri R; Mavriplis C; Fenech M
    PLoS One; 2018; 13(7):e0199911. PubMed ID: 30024907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of alternating current electric field-assisted non-Newtonian droplet formation with geometry confinement.
    Yin S; Huang Y; Li H; Wong TN
    Electrophoresis; 2022 Nov; 43(21-22):2120-2129. PubMed ID: 35524712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroosmotic flow of non-Newtonian fluids in a constriction microchannel.
    Ko CH; Li D; Malekanfard A; Wang YN; Fu LM; Xuan X
    Electrophoresis; 2019 May; 40(10):1387-1394. PubMed ID: 30346029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.