These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 30018697)
21. Non-invasive sensing of transepithelial barrier function and tissue differentiation in organs-on-chips using impedance spectroscopy. van der Helm MW; Henry OYF; Bein A; Hamkins-Indik T; Cronce MJ; Leineweber WD; Odijk M; van der Meer AD; Eijkel JCT; Ingber DE; van den Berg A; Segerink LI Lab Chip; 2019 Jan; 19(3):452-463. PubMed ID: 30632575 [TBL] [Abstract][Full Text] [Related]
22. Organs-on-Chips with combined multi-electrode array and transepithelial electrical resistance measurement capabilities. Maoz BM; Herland A; Henry OYF; Leineweber WD; Yadid M; Doyle J; Mannix R; Kujala VJ; FitzGerald EA; Parker KK; Ingber DE Lab Chip; 2017 Jun; 17(13):2294-2302. PubMed ID: 28608907 [TBL] [Abstract][Full Text] [Related]
23. Microfluidic assay for the on-chip electrochemical measurement of cell monolayer permeability. Wong JF; Simmons CA Lab Chip; 2019 Mar; 19(6):1060-1070. PubMed ID: 30778462 [TBL] [Abstract][Full Text] [Related]
24. Pharmacokinetic Analysis of Epithelial/Endothelial Cell Barriers in Microfluidic Bilayer Devices with an Air-Liquid Interface. Frost TS; Jiang L; Zohar Y Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32466113 [TBL] [Abstract][Full Text] [Related]
25. [Application of microfluidic chips in cellular microenvironment]. Lu S; Cal S; Jiang J Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Jun; 27(3):675-9. PubMed ID: 20649042 [TBL] [Abstract][Full Text] [Related]
26. Modelling cancer in microfluidic human organs-on-chips. Sontheimer-Phelps A; Hassell BA; Ingber DE Nat Rev Cancer; 2019 Feb; 19(2):65-81. PubMed ID: 30647431 [TBL] [Abstract][Full Text] [Related]
27. Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions. Humayun M; Chow CW; Young EWK Lab Chip; 2018 May; 18(9):1298-1309. PubMed ID: 29651473 [TBL] [Abstract][Full Text] [Related]
28. Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device. van der Meer AD; Orlova VV; ten Dijke P; van den Berg A; Mummery CL Lab Chip; 2013 Sep; 13(18):3562-8. PubMed ID: 23702711 [TBL] [Abstract][Full Text] [Related]
29. Tetrafluoroethylene-Propylene Elastomer for Fabrication of Microfluidic Organs-on-Chips Resistant to Drug Absorption. Sano E; Mori C; Matsuoka N; Ozaki Y; Yagi K; Wada A; Tashima K; Yamasaki S; Tanabe K; Yano K; Torisawa YS Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31752314 [TBL] [Abstract][Full Text] [Related]
30. Developmentally inspired human 'organs on chips'. Ingber DE Development; 2018 May; 145(16):. PubMed ID: 29776965 [TBL] [Abstract][Full Text] [Related]
32. Research on the Methods for the Mass Production of Multi-Scale Organs-On-Chips. Díaz Lantada A; Pfleging W; Besser H; Guttmann M; Wissmann M; Plewa K; Smyrek P; Piotter V; García-Ruíz JP Polymers (Basel); 2018 Nov; 10(11):. PubMed ID: 30961163 [TBL] [Abstract][Full Text] [Related]
33. Microphysiological Systems (Tissue Chips) and their Utility for Rare Disease Research. Low LA; Tagle DA Adv Exp Med Biol; 2017; 1031():405-415. PubMed ID: 29214585 [TBL] [Abstract][Full Text] [Related]
34. Reconstituting Cytoarchitecture and Function of Human Epithelial Tissues on an Open-Top Organ-Chip. Antonio V; Panchal A; Kasendra M; Riccardo B J Vis Exp; 2023 Feb; (192):. PubMed ID: 36876928 [TBL] [Abstract][Full Text] [Related]
35. Cells, tissues, and organs on chips: challenges and opportunities for the cancer tumor microenvironment. Young EW Integr Biol (Camb); 2013 Sep; 5(9):1096-109. PubMed ID: 23799587 [TBL] [Abstract][Full Text] [Related]
36. Novel Microfluidic Colon with an Extracellular Matrix Membrane. Wang C; Tanataweethum N; Karnik S; Bhushan A ACS Biomater Sci Eng; 2018 Apr; 4(4):1377-1385. PubMed ID: 33418668 [TBL] [Abstract][Full Text] [Related]
37. The crossing and integration between microfluidic technology and 3D printing for organ-on-chips. Mi S; Du Z; Xu Y; Sun W J Mater Chem B; 2018 Oct; 6(39):6191-6206. PubMed ID: 32254609 [TBL] [Abstract][Full Text] [Related]
39. Metabolic consequences of inflammatory disruption of the blood-brain barrier in an organ-on-chip model of the human neurovascular unit. Brown JA; Codreanu SG; Shi M; Sherrod SD; Markov DA; Neely MD; Britt CM; Hoilett OS; Reiserer RS; Samson PC; McCawley LJ; Webb DJ; Bowman AB; McLean JA; Wikswo JP J Neuroinflammation; 2016 Dec; 13(1):306. PubMed ID: 27955696 [TBL] [Abstract][Full Text] [Related]
40. Physiologically Based Pharmacokinetic and Pharmacodynamic Analysis Enabled by Microfluidically Linked Organs-on-Chips. Prantil-Baun R; Novak R; Das D; Somayaji MR; Przekwas A; Ingber DE Annu Rev Pharmacol Toxicol; 2018 Jan; 58():37-64. PubMed ID: 29309256 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]