BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30018980)

  • 41. A software-based x-ray scatter correction method for breast tomosynthesis.
    Jia Feng SS; Sechopoulos I
    Med Phys; 2011 Dec; 38(12):6643-53. PubMed ID: 22149846
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deep-learning-based projection-domain breast thickness estimation for shape-prior iterative image reconstruction in digital breast tomosynthesis.
    Lee S; Kim H; Lee H; Cho S
    Med Phys; 2022 Jun; 49(6):3670-3682. PubMed ID: 35297075
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction.
    Fahimian BP; Zhao Y; Huang Z; Fung R; Mao Y; Zhu C; Khatonabadi M; DeMarco JJ; Osher SJ; McNitt-Gray MF; Miao J
    Med Phys; 2013 Mar; 40(3):031914. PubMed ID: 23464329
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optimization of digital breast tomosynthesis (DBT) acquisition parameters for human observers: effect of reconstruction algorithms.
    Zeng R; Badano A; Myers KJ
    Phys Med Biol; 2017 Apr; 62(7):2598-2611. PubMed ID: 28151728
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Image quality of microcalcifications in digital breast tomosynthesis: effects of projection-view distributions.
    Lu Y; Chan HP; Wei J; Goodsitt M; Carson PL; Hadjiiski L; Schmitz A; Eberhard JW; Claus BE
    Med Phys; 2011 Oct; 38(10):5703-12. PubMed ID: 21992385
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of a novel algorithm for metal artifact reduction in digital tomosynthesis using projection-based dual-energy material decomposition for arthroplasty: A phantom study.
    Gomi T; Sakai R; Goto M; Hara H; Watanabe Y
    Phys Med; 2018 Sep; 53():4-16. PubMed ID: 30241753
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Maximum-Likelihood Expectation-Maximization Algorithm Versus Windowed Filtered Backprojection Algorithm: A Case Study.
    Zeng GL
    J Nucl Med Technol; 2018 Jun; 46(2):129-132. PubMed ID: 29438005
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Breast tomosynthesis using the multiple projection algorithm adapted for stationary detectors.
    Malliori A; Bliznakova K; Bliznakov Z; Cockmartin L; Bosmans H; Pallikarakis N
    J Xray Sci Technol; 2016; 24(1):23-41. PubMed ID: 26890907
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effect of a limited number of projections and reconstruction algorithms on the image quality of megavoltage digital tomosynthesis.
    Sarkar V; Shi C; Rassiah-Szegedi P; Diaz A; Eng T; Papanikolaou N
    J Appl Clin Med Phys; 2009 May; 10(3):155-172. PubMed ID: 19692978
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A comparative study based on image quality and clinical task performance for CT reconstruction algorithms in radiotherapy.
    Li H; Dolly S; Chen HC; Anastasio MA; Low DA; Li HH; Michalski JM; Thorstad WL; Gay H; Mutic S
    J Appl Clin Med Phys; 2016 Jul; 17(4):377-390. PubMed ID: 27455472
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Material decomposition for simulated dual-energy breast computed tomography via hybrid optimization method.
    Komolafe TE; Du Q; Zhang Y; Wu Z; Zhang C; Li M; Zheng J; Yang X
    J Xray Sci Technol; 2020; 28(6):1037-1054. PubMed ID: 33044222
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Impact of total variation minimization in volume rendering visualization of breast tomosynthesis data.
    Mota AM; Clarkson MJ; Almeida P; Peralta L; Matela N
    Comput Methods Programs Biomed; 2020 Oct; 195():105534. PubMed ID: 32480190
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Adaptive iterative dose reduction algorithm in CT: effect on image quality compared with filtered back projection in body phantoms of different sizes.
    Kim M; Lee JM; Yoon JH; Son H; Choi JW; Han JK; Choi BI
    Korean J Radiol; 2014; 15(2):195-204. PubMed ID: 24644409
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Adaptive-weighted total variation minimization for sparse data toward low-dose x-ray computed tomography image reconstruction.
    Liu Y; Ma J; Fan Y; Liang Z
    Phys Med Biol; 2012 Dec; 57(23):7923-56. PubMed ID: 23154621
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluation of digital breast tomosynthesis reconstruction algorithms using synchrotron radiation in standard geometry.
    Bliznakova K; Kolitsi Z; Speller RD; Horrocks JA; Tromba G; Pallikarakis N
    Med Phys; 2010 Apr; 37(4):1893-903. PubMed ID: 20443511
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhancement of soft-tissue contrast in cone-beam CT using an anti-scatter grid with a sparse sampling approach.
    Cho S; Lim S; Kim C; Wi S; Kwon T; Youn WS; Lee SH; Kang BS; Cho S
    Phys Med; 2020 Feb; 70():1-9. PubMed ID: 31931280
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A fast method to emulate an iterative POCS image reconstruction algorithm.
    Zeng GL
    Med Phys; 2017 Oct; 44(10):e353-e359. PubMed ID: 29027236
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of algorithms for out-of-plane artifacts removal in digital tomosynthesis reconstructions.
    Bliznakova K; Bliznakov Z; Buliev I
    Comput Methods Programs Biomed; 2012 Jul; 107(1):75-83. PubMed ID: 22056810
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Iterative projection onto convex sets for quantitative susceptibility mapping.
    Deng W; Boada F; Poser BA; Schirda C; Stenger VA
    Magn Reson Med; 2015 Feb; 73(2):697-703. PubMed ID: 24604410
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Sparse-view helical CT reconstruction based on tensor total generalized variation minimization].
    Chen G; Wang Y; Bian Z; Wei Z; Deng Y; Li M; Ma K; Tao X; Li B; Ma J; Huang J
    Nan Fang Yi Ke Da Xue Xue Bao; 2019 Oct; 39(10):1213-1220. PubMed ID: 31801709
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.