These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Glucose-methanol-based fed-batch fermentation for the production of recombinant human interferon gamma (rhIFN-γ) and evaluation of its antitumor potential. Prabhu AA; Kumar JP; Mandal BB; Veeranki VD Biotechnol Appl Biochem; 2020 Nov; 67(6):973-982. PubMed ID: 31811672 [TBL] [Abstract][Full Text] [Related]
3. Increasing pentose phosphate pathway flux enhances recombinant protein production in Pichia pastoris. Nocon J; Steiger M; Mairinger T; Hohlweg J; Rußmayer H; Hann S; Gasser B; Mattanovich D Appl Microbiol Biotechnol; 2016 Jul; 100(13):5955-63. PubMed ID: 27020289 [TBL] [Abstract][Full Text] [Related]
4. Impacts of high β-galactosidase expression on central metabolism of recombinant Pichia pastoris GS115 using glucose as sole carbon source via (13)C metabolic flux analysis. Nie Y; Huang M; Lu J; Qian J; Lin W; Chu J; Zhuang Y; Zhang S J Biotechnol; 2014 Oct; 187():124-34. PubMed ID: 25058396 [TBL] [Abstract][Full Text] [Related]
5. A novel reverse micellar purification strategy for histidine tagged human interferon gamma (hIFN-γ) protein from Pichia pastoris. Prabhu AA; Purkayastha A; Mandal B; Kumar JP; Mandal BB; Veeranki VD Int J Biol Macromol; 2018 Feb; 107(Pt B):2512-2524. PubMed ID: 29061519 [TBL] [Abstract][Full Text] [Related]
6. High-level extracellular production of Rhizopus oryzae lipase in Pichia pastoris via a strategy combining optimization of gene-copy number with co-expression of ERAD-related proteins. Jiao L; Zhou Q; Su Z; Xu L; Yan Y Protein Expr Purif; 2018 Jul; 147():1-12. PubMed ID: 29452270 [TBL] [Abstract][Full Text] [Related]
7. Metabolic flux analysis of recombinant Pichia pastoris growing on different glycerol/methanol mixtures by iterative fitting of NMR-derived (13)C-labelling data from proteinogenic amino acids. Jordà J; de Jesus SS; Peltier S; Ferrer P; Albiol J N Biotechnol; 2014 Jan; 31(1):120-32. PubMed ID: 23845285 [TBL] [Abstract][Full Text] [Related]
8. Metabolic engineering of Pichia pastoris for myo-inositol production by dynamic regulation of central metabolism. Zhang Q; Wang X; Luo H; Wang Y; Wang Y; Tu T; Qin X; Su X; Huang H; Yao B; Bai Y; Zhang J Microb Cell Fact; 2022 Jun; 21(1):112. PubMed ID: 35659241 [TBL] [Abstract][Full Text] [Related]
9. Deletion of D-ribulose-5-phosphate 3-epimerase (RPE1) induces simultaneous utilization of xylose and glucose in xylose-utilizing Saccharomyces cerevisiae. Shen MH; Song H; Li BZ; Yuan YJ Biotechnol Lett; 2015 May; 37(5):1031-6. PubMed ID: 25548118 [TBL] [Abstract][Full Text] [Related]
10. Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress. Juhnke H; Krems B; Kötter P; Entian KD Mol Gen Genet; 1996 Sep; 252(4):456-64. PubMed ID: 8879247 [TBL] [Abstract][Full Text] [Related]
11. Effects of Increased NADPH Concentration by Metabolic Engineering of the Pentose Phosphate Pathway on Antibiotic Production and Sporulation in Jin XM; Chang YK; Lee JH; Hong SK J Microbiol Biotechnol; 2017 Oct; 27(10):1867-1876. PubMed ID: 28838222 [TBL] [Abstract][Full Text] [Related]
12. Glucose-methanol co-utilization in Pichia pastoris studied by metabolomics and instationary ¹³C flux analysis. Jordà J; Suarez C; Carnicer M; ten Pierick A; Heijnen JJ; van Gulik W; Ferrer P; Albiol J; Wahl A BMC Syst Biol; 2013 Feb; 7():17. PubMed ID: 23448228 [TBL] [Abstract][Full Text] [Related]
13. [Secreted expression of porcine interferon-gamma gene in Pichia pastoris]. Huang ZQ; Hu HY; Chen XL; Ren LM; Lin AX; Chen YF Sheng Wu Gong Cheng Xue Bao; 2005 Sep; 21(5):731-6. PubMed ID: 16285513 [TBL] [Abstract][Full Text] [Related]
14. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli. Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031 [TBL] [Abstract][Full Text] [Related]
15. Bioprocess and downstream optimization of recombinant bovine chymosin B in Pichia (Komagataella) pastoris under methanol-inducible AOXI promoter. Noseda DG; Blasco M; Recúpero M; Galvagno MÁ Protein Expr Purif; 2014 Dec; 104():85-91. PubMed ID: 25278015 [TBL] [Abstract][Full Text] [Related]
16. Enhancing pentose phosphate pathway in Corynebacterium glutamicum to improve l-isoleucine production. Ma W; Wang J; Li Y; Hu X; Shi F; Wang X Biotechnol Appl Biochem; 2016 Nov; 63(6):877-885. PubMed ID: 27010514 [TBL] [Abstract][Full Text] [Related]
17. Application of medium optimization tools for improving recombinant human interferon gamma production from Kluyveromyces lactis. Pandey R; Kumar N; Prabhu AA; Veeranki VD Prep Biochem Biotechnol; 2018 Mar; 48(3):279-287. PubMed ID: 29424635 [TBL] [Abstract][Full Text] [Related]
18. Expression, purification and characterization of human interferon-γ in Pichia pastoris. Wang D; Ren H; Xu JW; Sun PD; Fang XD Mol Med Rep; 2014 Feb; 9(2):715-9. PubMed ID: 24253448 [TBL] [Abstract][Full Text] [Related]
19. Quantitative physiology of Pichia pastoris during glucose-limited high-cell density fed-batch cultivation for recombinant protein production. Heyland J; Fu J; Blank LM; Schmid A Biotechnol Bioeng; 2010 Oct; 107(2):357-68. PubMed ID: 20552674 [TBL] [Abstract][Full Text] [Related]
20. Toward the construction of a technology platform for chemicals production from methanol: D-lactic acid production from methanol by an engineered yeast Pichia pastoris. Yamada R; Ogura K; Kimoto Y; Ogino H World J Microbiol Biotechnol; 2019 Feb; 35(2):37. PubMed ID: 30715602 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]