BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 30019152)

  • 21. Enhancement of thermoalkaliphilic xylanase production by Pichia pastoris through novel fed-batch strategy in high cell-density fermentation.
    Shang T; Si D; Zhang D; Liu X; Zhao L; Hu C; Fu Y; Zhang R
    BMC Biotechnol; 2017 Jun; 17(1):55. PubMed ID: 28633643
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cloning, expression and optimized production in a bioreactor of bovine chymosin B in Pichia (Komagataella) pastoris under AOX1 promoter.
    Noseda DG; Recúpero MN; Blasco M; Ortiz GE; Galvagno MA
    Protein Expr Purif; 2013 Dec; 92(2):235-44. PubMed ID: 24141135
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancement of riboflavin production in Bacillus subtilis via in vitro and in vivo metabolic engineering of pentose phosphate pathway.
    Zhang M; Zhao X; Chen X; Li M; Wang X
    Biotechnol Lett; 2021 Dec; 43(12):2209-2216. PubMed ID: 34606014
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Constitutive expression of a rhIL-2-HSA fusion protein in Pichia pastoris using glucose as carbon source.
    Guan B; Chen F; Lei J; Li Y; Duan Z; Zhu R; Chen Y; Li H; Jin J
    Appl Biochem Biotechnol; 2013 Dec; 171(7):1792-804. PubMed ID: 23999737
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Is Pichia pastoris a realistic platform for industrial production of recombinant human interferon gamma?
    Razaghi A; Tan E; Lua LHL; Owens L; Karthikeyan OP; Heimann K
    Biologicals; 2017 Jan; 45():52-60. PubMed ID: 27810255
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancement of cytidine production by coexpression of gnd, zwf, and prs genes in recombinant Escherichia coli CYT15.
    Fang H; Xie X; Xu Q; Zhang C; Chen N
    Biotechnol Lett; 2013 Feb; 35(2):245-51. PubMed ID: 23070626
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced production of Thermomyces lanuginosus lipase in Pichia pastoris via genetic and fermentation strategies.
    Fang Z; Xu L; Pan D; Jiao L; Liu Z; Yan Y
    J Ind Microbiol Biotechnol; 2014 Oct; 41(10):1541-51. PubMed ID: 25074457
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic genome-scale metabolic modeling of the yeast Pichia pastoris.
    Saitua F; Torres P; Pérez-Correa JR; Agosin E
    BMC Syst Biol; 2017 Feb; 11(1):27. PubMed ID: 28222737
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel homologous lactate transporter improves L-lactic acid production from glycerol in recombinant strains of Pichia pastoris.
    de Lima PB; Mulder KC; Melo NT; Carvalho LS; Menino GS; Mulinari E; de Castro VH; Dos Reis TF; Goldman GH; Magalhães BS; Parachin NS
    Microb Cell Fact; 2016 Sep; 15(1):158. PubMed ID: 27634467
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production.
    Jo S; Yoon J; Lee SM; Um Y; Han SO; Woo HM
    J Biotechnol; 2017 Sep; 258():69-78. PubMed ID: 28153765
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Overexpression of Candida rugosa lipase Lip1 via combined strategies in Pichia pastoris.
    Li X; Liu Z; Wang G; Pan D; Jiao L; Yan Y
    Enzyme Microb Technol; 2016 Jan; 82():115-124. PubMed ID: 26672457
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Presence of protein production enhancers results in significantly higher methanol-induced protein production in Pichia pastoris.
    Gidijala L; Uthoff S; van Kampen SJ; Steinbüchel A; Verhaert RMD
    Microb Cell Fact; 2018 Jul; 17(1):112. PubMed ID: 30005638
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic engineering of pentose phosphate pathway in Ralstoniaeutropha for enhanced biosynthesis of poly-beta-hydroxybutyrate.
    Lee JN; Shin HD; Lee YH
    Biotechnol Prog; 2003; 19(5):1444-9. PubMed ID: 14524705
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production of recombinant human antithrombin by Pichia pastoris.
    Kuwae S; Ohyama M; Ohya T; Ohi H; Kobayashi K
    J Biosci Bioeng; 2005 Mar; 99(3):264-71. PubMed ID: 16233787
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dual-substrate inhibition kinetic studies for recombinant human interferon gamma producing Pichia pastoris.
    Prabhu AA; Venkata Dasu V
    Prep Biochem Biotechnol; 2017 Nov; 47(10):953-962. PubMed ID: 29185908
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression, activation and characterization of porcine trypsin in Pichia pastoris GS115.
    Shu M; Shen W; Wang X; Wang F; Ma L; Zhai C
    Protein Expr Purif; 2015 Oct; 114():149-55. PubMed ID: 26118809
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic flux analysis for recombinant protein production by Pichia pastoris using dual carbon sources: Effects of methanol feeding rate.
    Celik E; Calik P; Oliver SG
    Biotechnol Bioeng; 2010 Feb; 105(2):317-29. PubMed ID: 19777584
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetically engineered Pichia pastoris yeast for conversion of glucose to xylitol by a single-fermentation process.
    Cheng H; Lv J; Wang H; Wang B; Li Z; Deng Z
    Appl Microbiol Biotechnol; 2014 Apr; 98(8):3539-52. PubMed ID: 24419799
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization of the pilot-scale production of an ice-binding protein by fed-batch culture of Pichia pastoris.
    Lee JH; Lee SG; Do H; Park JC; Kim E; Choe YH; Han SJ; Kim HJ
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3383-93. PubMed ID: 23203635
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-level secretory expression of human procarboxypeptidase B by Fed-Batch cultivation of Pichia pastoris and its partial characterization.
    Kim MJ; Kim SH; Lee JH; Seo JH; Lee JH; Kim JH; Kim YH; Nam SW
    J Microbiol Biotechnol; 2008 Dec; 18(12):1938-44. PubMed ID: 19131697
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.