These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 30019398)
1. GLP-1 neurons form a local synaptic circuit within the rodent nucleus of the solitary tract. Card JP; Johnson AL; Llewellyn-Smith IJ; Zheng H; Anand R; Brierley DI; Trapp S; Rinaman L J Comp Neurol; 2018 Oct; 526(14):2149-2164. PubMed ID: 30019398 [TBL] [Abstract][Full Text] [Related]
2. Serotonergic modulation of the activity of GLP-1 producing neurons in the nucleus of the solitary tract in mouse. Holt MK; Llewellyn-Smith IJ; Reimann F; Gribble FM; Trapp S Mol Metab; 2017 Aug; 6(8):909-921. PubMed ID: 28752054 [TBL] [Abstract][Full Text] [Related]
3. PPG neurons in the nucleus of the solitary tract modulate heart rate but do not mediate GLP-1 receptor agonist-induced tachycardia in mice. Holt MK; Cook DR; Brierley DI; Richards JE; Reimann F; Gourine AV; Marina N; Trapp S Mol Metab; 2020 Sep; 39():101024. PubMed ID: 32446875 [TBL] [Abstract][Full Text] [Related]
4. Differential activation of chemically identified neurons in the caudal nucleus of the solitary tract in non-entrained rats after intake of satiating vs. non-satiating meals. Kreisler AD; Davis EA; Rinaman L Physiol Behav; 2014 Sep; 136():47-54. PubMed ID: 24508750 [TBL] [Abstract][Full Text] [Related]
5. Synaptic Inputs to the Mouse Dorsal Vagal Complex and Its Resident Preproglucagon Neurons. Holt MK; Pomeranz LE; Beier KT; Reimann F; Gribble FM; Rinaman L J Neurosci; 2019 Dec; 39(49):9767-9781. PubMed ID: 31666353 [TBL] [Abstract][Full Text] [Related]
6. Divergent leptin signaling in proglucagon neurons of the nucleus of the solitary tract in mice and rats. Huo L; Gamber KM; Grill HJ; Bjørbaek C Endocrinology; 2008 Feb; 149(2):492-7. PubMed ID: 17974623 [TBL] [Abstract][Full Text] [Related]
7. Leptin directly depolarizes preproglucagon neurons in the nucleus tractus solitarius: electrical properties of glucagon-like Peptide 1 neurons. Hisadome K; Reimann F; Gribble FM; Trapp S Diabetes; 2010 Aug; 59(8):1890-8. PubMed ID: 20522593 [TBL] [Abstract][Full Text] [Related]
8. PPG neurons of the lower brain stem and their role in brain GLP-1 receptor activation. Trapp S; Cork SC Am J Physiol Regul Integr Comp Physiol; 2015 Oct; 309(8):R795-804. PubMed ID: 26290108 [TBL] [Abstract][Full Text] [Related]
10. The role of nucleus of the solitary tract glucagon-like peptide-1 and prolactin-releasing peptide neurons in stress: anatomy, physiology and cellular interactions. Holt MK; Rinaman L Br J Pharmacol; 2022 Feb; 179(4):642-658. PubMed ID: 34050926 [TBL] [Abstract][Full Text] [Related]
12. Negative Energy Balance Blocks Neural and Behavioral Responses to Acute Stress by "Silencing" Central Glucagon-Like Peptide 1 Signaling in Rats. Maniscalco JW; Zheng H; Gordon PJ; Rinaman L J Neurosci; 2015 Jul; 35(30):10701-14. PubMed ID: 26224855 [TBL] [Abstract][Full Text] [Related]
13. Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. Merchenthaler I; Lane M; Shughrue P J Comp Neurol; 1999 Jan; 403(2):261-80. PubMed ID: 9886047 [TBL] [Abstract][Full Text] [Related]
14. GLP-1 action in the mouse bed nucleus of the stria terminalis. Williams DL; Lilly NA; Edwards IJ; Yao P; Richards JE; Trapp S Neuropharmacology; 2018 Mar; 131():83-95. PubMed ID: 29221794 [TBL] [Abstract][Full Text] [Related]
15. Ghrelin signaling contributes to fasting-induced attenuation of hindbrain neural activation and hypophagic responses to systemic cholecystokinin in rats. Maniscalco JW; Edwards CM; Rinaman L Am J Physiol Regul Integr Comp Physiol; 2020 May; 318(5):R1014-R1023. PubMed ID: 32292065 [TBL] [Abstract][Full Text] [Related]
16. Sex and metabolic state interact to influence expression of passive avoidance memory in rats: Potential contribution of A2 noradrenergic neurons. Edwards CM; Dolezel T; Rinaman L Physiol Behav; 2021 Oct; 239():113511. PubMed ID: 34181929 [TBL] [Abstract][Full Text] [Related]
17. Preproglucagon neurons in the hindbrain have IL-6 receptor-α and show Ca2+ influx in response to IL-6. Anesten F; Holt MK; Schéle E; Pálsdóttir V; Reimann F; Gribble FM; Safari C; Skibicka KP; Trapp S; Jansson JO Am J Physiol Regul Integr Comp Physiol; 2016 Jul; 311(1):R115-23. PubMed ID: 27097661 [TBL] [Abstract][Full Text] [Related]
18. Central and peripheral GLP-1 systems independently suppress eating. Brierley DI; Holt MK; Singh A; de Araujo A; McDougle M; Vergara M; Afaghani MH; Lee SJ; Scott K; Maske C; Langhans W; Krause E; de Kloet A; Gribble FM; Reimann F; Rinaman L; de Lartigue G; Trapp S Nat Metab; 2021 Feb; 3(2):258-273. PubMed ID: 33589843 [TBL] [Abstract][Full Text] [Related]
19. Preproglucagon Neurons in the Nucleus of the Solitary Tract Are the Main Source of Brain GLP-1, Mediate Stress-Induced Hypophagia, and Limit Unusually Large Intakes of Food. Holt MK; Richards JE; Cook DR; Brierley DI; Williams DL; Reimann F; Gribble FM; Trapp S Diabetes; 2019 Jan; 68(1):21-33. PubMed ID: 30279161 [TBL] [Abstract][Full Text] [Related]
20. Paraventricular Thalamic Control of Food Intake and Reward: Role of Glucagon-Like Peptide-1 Receptor Signaling. Ong ZY; Liu JJ; Pang ZP; Grill HJ Neuropsychopharmacology; 2017 Nov; 42(12):2387-2397. PubMed ID: 28811669 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]