These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 30019691)

  • 1. Intermittent locomotion of a fish-like swimmer driven by passive elastic mechanism.
    Dai L; He G; Zhang X; Zhang X
    Bioinspir Biomim; 2018 Jul; 13(5):056011. PubMed ID: 30019691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On burst-and-coast swimming performance in fish-like locomotion.
    Chung MH
    Bioinspir Biomim; 2009 Sep; 4(3):036001. PubMed ID: 19567970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Burst-and-coast swimmers optimize gait by adapting unique intrinsic cycle.
    Li G; Ashraf I; François B; Kolomenskiy D; Lechenault F; Godoy-Diana R; Thiria B
    Commun Biol; 2021 Jan; 4(1):40. PubMed ID: 33446863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of non-uniform stiffness on the swimming performance of a passively-flexing, fish-like foil model.
    Lucas KN; Thornycroft PJ; Gemmell BJ; Colin SP; Costello JH; Lauder GV
    Bioinspir Biomim; 2015 Oct; 10(5):056019. PubMed ID: 26447541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical investigation of cephalopod-inspired locomotion with intermittent bursts.
    Bi X; Zhu Q
    Bioinspir Biomim; 2018 Jul; 13(5):056005. PubMed ID: 29972142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Burst-and-coast swimming is not always energetically beneficial in fish (Hemigrammus bleheri).
    Ashraf I; Van Wassenbergh S; Verma S
    Bioinspir Biomim; 2020 Nov; 16(1):016002. PubMed ID: 33164910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion.
    Li N; Liu H; Su Y
    PLoS One; 2017; 12(3):e0174740. PubMed ID: 28362836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding undulatory locomotion in fishes using an inertia-compensated flapping foil robotic device.
    Wen L; Lauder G
    Bioinspir Biomim; 2013 Dec; 8(4):046013. PubMed ID: 24263114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of shape and stroke parameters on the propulsion performance of an axisymmetric swimmer.
    Peng J; Alben S
    Bioinspir Biomim; 2012 Mar; 7(1):016012. PubMed ID: 22345408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulations of undulatory swimming at moderate Reynolds number.
    Eldredge JD
    Bioinspir Biomim; 2006 Dec; 1(4):S19-24. PubMed ID: 17671314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechatronic design and locomotion control of a robotic thunniform swimmer for fast cruising.
    Hu Y; Liang J; Wang T
    Bioinspir Biomim; 2015 Mar; 10(2):026006. PubMed ID: 25822708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamics of a Flexible Soft-Rayed Caudal Fin.
    Iosilevskii G
    PLoS One; 2016; 11(10):e0163517. PubMed ID: 27695043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetic extremes in aquatic locomotion by coral reef fishes.
    Fulton CJ; Johansen JL; Steffensen JF
    PLoS One; 2013; 8(1):e54033. PubMed ID: 23326566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synchronisation through learning for two self-propelled swimmers.
    Novati G; Verma S; Alexeev D; Rossinelli D; van Rees WM; Koumoutsakos P
    Bioinspir Biomim; 2017 Mar; 12(3):036001. PubMed ID: 28355166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Undulatory locomotion of flexible foils as biomimetic models for understanding fish propulsion.
    Shelton RM; Thornycroft PJ; Lauder GV
    J Exp Biol; 2014 Jun; 217(Pt 12):2110-20. PubMed ID: 24625649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locomotion of neutrally buoyant fish with flexible caudal fin.
    Iosilevskii G
    J Theor Biol; 2016 Jun; 399():159-65. PubMed ID: 27067246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimally efficient swimming in hyper-redundant mechanisms: control, design, and energy recovery.
    Wiens AJ; Nahon M
    Bioinspir Biomim; 2012 Dec; 7(4):046016. PubMed ID: 23135166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Kármán gait: novel body kinematics of rainbow trout swimming in a vortex street.
    Liao JC; Beal DN; Lauder GV; Triantafyllou MS
    J Exp Biol; 2003 Mar; 206(Pt 6):1059-73. PubMed ID: 12582148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-inspired aquatic robotics by untethered piezohydroelastic actuation.
    Cen L; Erturk A
    Bioinspir Biomim; 2013 Mar; 8(1):016006. PubMed ID: 23348365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renewable fluid dynamic energy derived from aquatic animal locomotion.
    Dabiri JO
    Bioinspir Biomim; 2007 Sep; 2(3):L1-3. PubMed ID: 17848785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.