BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 30019750)

  • 1. Metabolic engineering of Escherichia coli for the enhanced production of l-tyrosine.
    Kim B; Binkley R; Kim HU; Lee SY
    Biotechnol Bioeng; 2018 Oct; 115(10):2554-2564. PubMed ID: 30019750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of Escherichia coli for L-tyrosine production by expression of genes coding for the chorismate mutase domain of the native chorismate mutase-prephenate dehydratase and a cyclohexadienyl dehydrogenase from Zymomonas mobilis.
    Chávez-Béjar MI; Lara AR; López H; Hernández-Chávez G; Martinez A; Ramírez OT; Bolívar F; Gosset G
    Appl Environ Microbiol; 2008 May; 74(10):3284-90. PubMed ID: 18344329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. L-tyrosine production by deregulated strains of Escherichia coli.
    Lütke-Eversloh T; Stephanopoulos G
    Appl Microbiol Biotechnol; 2007 May; 75(1):103-10. PubMed ID: 17221195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Escherichia coli for improving L-3,4-dihydroxyphenylalanine (L-DOPA) synthesis from glucose.
    Muñoz AJ; Hernández-Chávez G; de Anda R; Martínez A; Bolívar F; Gosset G
    J Ind Microbiol Biotechnol; 2011 Nov; 38(11):1845-52. PubMed ID: 21512819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosome engineering of Escherichia coli for constitutive production of salvianic acid A.
    Zhou L; Ding Q; Jiang GZ; Liu ZN; Wang HY; Zhao GR
    Microb Cell Fact; 2017 May; 16(1):84. PubMed ID: 28511681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathway Engineering for Phenethylamine Production in
    Xu D; Zhang L
    J Agric Food Chem; 2020 May; 68(21):5917-5926. PubMed ID: 32367713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo resveratrol production through modular engineering of an Escherichia coli-Saccharomyces cerevisiae co-culture.
    Yuan SF; Yi X; Johnston TG; Alper HS
    Microb Cell Fact; 2020 Jul; 19(1):143. PubMed ID: 32664999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromosome Engineering To Generate Plasmid-Free Phenylalanine- and Tyrosine-Overproducing
    Koma D; Kishida T; Yoshida E; Ohashi H; Yamanaka H; Moriyoshi K; Nagamori E; Ohmoto T
    Appl Environ Microbiol; 2020 Jul; 86(14):. PubMed ID: 32414798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feedback inhibition of chorismate mutase/prephenate dehydrogenase (TyrA) of Escherichia coli: generation and characterization of tyrosine-insensitive mutants.
    Lütke-Eversloh T; Stephanopoulos G
    Appl Environ Microbiol; 2005 Nov; 71(11):7224-8. PubMed ID: 16269762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of Escherichia coli for the production of an antifouling agent zosteric acid.
    Zhang P; Gao J; Zhang H; Wang Y; Liu Z; Lee SY; Mao X
    Metab Eng; 2023 Mar; 76():247-259. PubMed ID: 36822462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of E. coli aroG-pheA tandem genes into Corynebacterium glutamicum tyrA locus and its effect on L-phenylalanine biosynthesis.
    Liu DX; Fan CS; Tao JH; Liang GX; Gao SE; Wang HJ; Li X; Song DX
    World J Gastroenterol; 2004 Dec; 10(24):3683-7. PubMed ID: 15534933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining Random Mutagenesis and Metabolic Engineering for Enhanced Tryptophan Production in
    Deshpande A; Vue J; Morgan J
    Appl Environ Microbiol; 2020 Apr; 86(9):. PubMed ID: 32144109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Escherichia coli W3110 strain by incorporating genome-level modifications and synthetic plasmid modules to enhance L-Dopa production from glycerol.
    Das A; Tyagi N; Verma A; Akhtar S; Mukherjee KJ
    Prep Biochem Biotechnol; 2018; 48(8):671-682. PubMed ID: 30015557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fermentation and Metabolic Pathway Optimization to De Novo Synthesize (2S)-Naringenin in
    Zhou S; Hao T; Zhou J
    J Microbiol Biotechnol; 2020 Oct; 30(10):1574-1582. PubMed ID: 32830192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combinatorial pathway analysis for improved L-tyrosine production in Escherichia coli: identification of enzymatic bottlenecks by systematic gene overexpression.
    Lütke-Eversloh T; Stephanopoulos G
    Metab Eng; 2008 Mar; 10(2):69-77. PubMed ID: 18243023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of tyrosine and phenylalanine biosynthesis in Salmonella.
    Sprinson DB; Gollub EG; Hu RC; Liu KP
    Acta Microbiol Acad Sci Hung; 1976; 23(2):167-70. PubMed ID: 9783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of gene knockout of L-tyrosine transport system on L-tyrosine production in Escherichia coli].
    Wang Q; Zeng W; Zhou J
    Sheng Wu Gong Cheng Xue Bao; 2019 Jul; 35(7):1247-1255. PubMed ID: 31328481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing an Escherichia coli Strain for Phenylalanine Overproduction by Metabolic Engineering.
    Tyagi N; Saini D; Guleria R; Mukherjee KJ
    Mol Biotechnol; 2017 May; 59(4-5):168-178. PubMed ID: 28374116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced production of L-phenylalanine in Corynebacterium glutamicum due to the introduction of Escherichia coli wild-type gene aroH.
    Zhang C; Zhang J; Kang Z; Du G; Yu X; Wang T; Chen J
    J Ind Microbiol Biotechnol; 2013 Jun; 40(6):643-51. PubMed ID: 23526182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome engineering Escherichia coli for L-DOPA overproduction from glucose.
    Wei T; Cheng BY; Liu JZ
    Sci Rep; 2016 Jul; 6():30080. PubMed ID: 27417146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.