These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 30019846)

  • 1. Shrinkable Nanotubes for Duplex Formation of Short Nucleotides.
    Kameta N; Akiyama H
    Small; 2018 Aug; 14(34):e1801967. PubMed ID: 30019846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soft nanotube hydrogels functioning as artificial chaperones.
    Kameta N; Masuda M; Shimizu T
    ACS Nano; 2012 Jun; 6(6):5249-58. PubMed ID: 22616914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoresponsive PEG-Coated Nanotubes as Chiral Selectors of Amino Acids and Peptides.
    Kameta N; Dong J; Yui H
    Small; 2018 Apr; 14(15):e1800030. PubMed ID: 29532990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Photoinduced Size Changes on Protein Refolding and Transport Abilities of Soft Nanotubes.
    Kameta N; Akiyama H; Masuda M; Shimizu T
    Chemistry; 2016 May; 22(21):7198-205. PubMed ID: 27121150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Confinement effect of organic nanotubes toward green fluorescent protein (GFP) depending on the inner diameter size.
    Kameta N; Minamikawa H; Someya Y; Yui H; Masuda M; Shimizu T
    Chemistry; 2010 Apr; 16(14):4217-23. PubMed ID: 20235251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local environment and property of water inside the hollow cylinder of a lipid nanotube.
    Yui H; Guo Y; Koyama K; Sawada T; John G; Yang B; Masuda M; Shimizu T
    Langmuir; 2005 Jan; 21(2):721-7. PubMed ID: 15641846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trinucleotide duplex formation inside a confined nanospace under supercooled conditions.
    Arafune H; Yamaguchi A; Namekawa M; Sato Y; Itoh T; Yoshida R; Teramae N
    Nat Commun; 2014 Oct; 5():5151. PubMed ID: 25307613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of gold nanoclusters: a fluorescent marker for water-soluble TiO2 nanotubes.
    Ratanatawanate C; Yu J; Zhou C; Zheng J; Balkus KJ
    Nanotechnology; 2011 Feb; 22(6):065601. PubMed ID: 21212487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stacking of nanorings to generate nanotubes for acceleration of protein refolding.
    Kameta N; Ding W
    Nanoscale; 2021 Jan; 13(3):1629-1638. PubMed ID: 33331384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joining Nanotubes Comprising Nucleobase-carrying Amphiphilic Polypeptides.
    Itagaki T; Ueda Y; Itabashi K; Uji H; Kimura S
    Chimia (Aarau); 2018 Dec; 72(12):842-847. PubMed ID: 30648948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and synthesis of caged fluorescent nucleotides and application to live-cell RNA imaging.
    Ikeda S; Kubota T; Wang DO; Yanagisawa H; Umemoto T; Okamoto A
    Chembiochem; 2011 Dec; 12(18):2871-80. PubMed ID: 22215304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of confinement on proteins concentrated in lithocholic acid based organic nanotubes.
    Lu Q; Kim Y; Bassim N; Collins GE
    J Colloid Interface Sci; 2015 Sep; 454():97-104. PubMed ID: 26004574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved bone-forming functionality on diameter-controlled TiO(2) nanotube surface.
    Brammer KS; Oh S; Cobb CJ; Bjursten LM; van der Heyde H; Jin S
    Acta Biomater; 2009 Oct; 5(8):3215-23. PubMed ID: 19447210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimuli-Responsive Transformable Supramolecular Nanotubes.
    Kameta N
    Chem Rec; 2022 Jun; 22(6):e202200025. PubMed ID: 35244334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane nanotube pearling restricted by confined polymers.
    Yan Z; Li S; Luo Z; Xu Y; Yue T
    Soft Matter; 2018 Nov; 14(46):9383-9392. PubMed ID: 30418454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concentration and pH-dependent aggregation behavior of an l-histidine based amphiphile in aqueous solution.
    Ghosh A; Shrivastava S; Dey J
    Chem Phys Lipids; 2010 Jun; 163(6):561-8. PubMed ID: 20398642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size tuning of Ag-decorated TiO₂ nanotube arrays for improved bactericidal capacity of orthopedic implants.
    Esfandiari N; Simchi A; Bagheri R
    J Biomed Mater Res A; 2014 Aug; 102(8):2625-35. PubMed ID: 23982977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative displacement measurement of a nanotube cantilever with nanometer accuracy using epifluorescence microscopy.
    Park H; Kwon S; Kim S
    Rev Sci Instrum; 2009 May; 80(5):053703. PubMed ID: 19485512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noncovalent functionalization of disentangled boron nitride nanotubes with flavin mononucleotides for strong and stable visible-light emission in aqueous solution.
    Gao Z; Zhi C; Bando Y; Golberg D; Serizawa T
    ACS Appl Mater Interfaces; 2011 Mar; 3(3):627-32. PubMed ID: 21355547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic DNA Nanotubes: Nanoscale Channel Design and Applications.
    Liu X; Zhao Y; Liu P; Wang L; Lin J; Fan C
    Angew Chem Int Ed Engl; 2019 Jul; 58(27):8996-9011. PubMed ID: 30290046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.