These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 30019846)

  • 21. Helix formation inside a nanotube: possible influence of backbone-water hydrogen bonding by the confining surface through modulation of water activity.
    Zhou HX
    J Chem Phys; 2007 Dec; 127(24):245101. PubMed ID: 18163710
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Short, highly ordered, single-walled mixed-oxide nanotubes assemble from amorphous nanoparticles.
    Mukherjee S; Kim K; Nair S
    J Am Chem Soc; 2007 May; 129(21):6820-6. PubMed ID: 17480076
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ssDNA-amphiphile architecture used to control dimensions of DNA nanotubes.
    Kuang H; Gartner Iii TE; Dorneles de Mello M; Guo J; Zuo X; Tsapatsis M; Jayaraman A; Kokkoli E
    Nanoscale; 2019 Nov; 11(42):19850-19861. PubMed ID: 31559999
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DNA Nanotubes with Hydrophobic Environments: Toward New Platforms for Guest Encapsulation and Cellular Delivery.
    Rahbani JF; Vengut-Climent E; Chidchob P; Gidi Y; Trinh T; Cosa G; Sleiman HF
    Adv Healthc Mater; 2018 Mar; 7(6):e1701049. PubMed ID: 29356412
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanotubes of mixed-valence, transition metal compounds synthesized by solution phase approach.
    Wang T; Hu X; Dong S
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2516-20. PubMed ID: 17663274
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DNA nanotubes and helical nanotapes via self-assembly of ssDNA-amphiphiles.
    Pearce TR; Kokkoli E
    Soft Matter; 2015 Jan; 11(1):109-17. PubMed ID: 25370121
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermodynamics of supramolecular naphthalenediimide nanotube formation: the influence of solvents, side chains, and guest templates.
    Ponnuswamy N; Pantoş GD; Smulders MM; Sanders JK
    J Am Chem Soc; 2012 Jan; 134(1):566-73. PubMed ID: 22098622
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TiO2-nanotube-based dye-sensitized solar cells containing fluorescent material.
    Kim WR; Lee YJ; Park H; Lee JJ; Choi WY
    J Nanosci Nanotechnol; 2013 May; 13(5):3487-90. PubMed ID: 23858885
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Guided proliferation and bone-forming functionality on highly ordered large diameter TiO2 nanotube arrays.
    Zhang R; Wu H; Ni J; Zhao C; Chen Y; Zheng C; Zhang X
    Mater Sci Eng C Mater Biol Appl; 2015 Aug; 53():272-9. PubMed ID: 26042715
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of TiO2-based nanotube on Ti substrate by hydrothermal treatment.
    Chi B; Victorio ES; Jin T
    J Nanosci Nanotechnol; 2007 Feb; 7(2):668-72. PubMed ID: 17450812
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The structure of nanochannels formed by block copolymer solutions confined in nanotubes.
    Chen H; Ruckenstein E
    J Chem Phys; 2009 Sep; 131(11):114904. PubMed ID: 19778146
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of Cavity Size of Mesoporous Silica on Short DNA Duplex Stability.
    Masuda T; Shibuya Y; Arai S; Kobayashi S; Suzuki S; Kijima J; Itoh T; Sato Y; Nishizawa S; Yamaguchi A
    Langmuir; 2018 May; 34(19):5545-5550. PubMed ID: 29715034
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pyrene acetylide nucleotides in GNA: probing duplex formation and sensing of copper(II) ions.
    Zhou H; Ma X; Wang J; Zhang L
    Org Biomol Chem; 2009 Jun; 7(11):2297-302. PubMed ID: 19462038
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Size selective behavior of mesenchymal stem cells on ZrO(2) and TiO(2) nanotube arrays.
    Bauer S; Park J; Faltenbacher J; Berger S; von der Mark K; Schmuki P
    Integr Biol (Camb); 2009 Sep; 1(8-9):525-32. PubMed ID: 20023767
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Charge transport in vertically aligned, self-assembled peptide nanotube junctions.
    Mizrahi M; Zakrassov A; Lerner-Yardeni J; Ashkenasy N
    Nanoscale; 2012 Jan; 4(2):518-24. PubMed ID: 22116517
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The ice-like water monolayer near the wall makes inner water shells diffuse faster inside a charged nanotube.
    Zhou X; Wang C; Wu F; Feng M; Li J; Lu H; Zhou R
    J Chem Phys; 2013 May; 138(20):204710. PubMed ID: 23742503
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced flow of core-softened fluids through narrow nanotubes.
    Bordin JR; Andrade JS; Diehl A; Barbosa MC
    J Chem Phys; 2014 May; 140(19):194504. PubMed ID: 24852547
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-Assembly of a Pyridine-Based Amphiphile Complexed with Regioisomeric Dihydroxy Naphthalenes into Supramolecular Nanotubes with Different Inner Diameters.
    Kameta N; Kogiso M
    Chemistry; 2021 Sep; 27(49):12566-12573. PubMed ID: 34296478
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluorescent single walled carbon nanotube/silica composite materials.
    Satishkumar BC; Doorn SK; Baker GA; Dattelbaum AM
    ACS Nano; 2008 Nov; 2(11):2283-90. PubMed ID: 19206394
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A study on a special DNA nanotube assembled from two single-stranded tiles.
    Xu F; Wu T; Shi X; Pan L
    Nanotechnology; 2019 Mar; 30(11):115602. PubMed ID: 30566929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.