These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 30019846)

  • 41. Size selective behavior of mesenchymal stem cells on ZrO(2) and TiO(2) nanotube arrays.
    Bauer S; Park J; Faltenbacher J; Berger S; von der Mark K; Schmuki P
    Integr Biol (Camb); 2009 Sep; 1(8-9):525-32. PubMed ID: 20023767
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The ice-like water monolayer near the wall makes inner water shells diffuse faster inside a charged nanotube.
    Zhou X; Wang C; Wu F; Feng M; Li J; Lu H; Zhou R
    J Chem Phys; 2013 May; 138(20):204710. PubMed ID: 23742503
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Autonomous dynamic control of DNA nanostructure self-assembly.
    Green LN; Subramanian HKK; Mardanlou V; Kim J; Hariadi RF; Franco E
    Nat Chem; 2019 Jun; 11(6):510-520. PubMed ID: 31011170
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Charge transport in vertically aligned, self-assembled peptide nanotube junctions.
    Mizrahi M; Zakrassov A; Lerner-Yardeni J; Ashkenasy N
    Nanoscale; 2012 Jan; 4(2):518-24. PubMed ID: 22116517
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced flow of core-softened fluids through narrow nanotubes.
    Bordin JR; Andrade JS; Diehl A; Barbosa MC
    J Chem Phys; 2014 May; 140(19):194504. PubMed ID: 24852547
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reverse Translocation of Nucleotides through a Carbon Nanotube.
    Farshad M; Rasaiah JC
    J Phys Chem B; 2020 Feb; 124(6):937-943. PubMed ID: 31917564
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Horseradish peroxidase-driven fluorescent labeling of nanotubes with quantum dots.
    Didenko VV; Baskin DS
    Biotechniques; 2006 Mar; 40(3):295-6, 298, 300-2. PubMed ID: 16568818
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stability of diphenylalanine peptide nanotubes in solution.
    Andersen KB; Castillo-Leon J; Hedström M; Svendsen WE
    Nanoscale; 2011 Mar; 3(3):994-8. PubMed ID: 21132174
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A linear chain of water molecules accommodated in a macrocyclic nanotube channel.
    Ono K; Tsukamoto K; Hosokawa R; Kato M; Suganuma M; Tomura M; Sako K; Taga K; Saito K
    Nano Lett; 2009 Jan; 9(1):122-5. PubMed ID: 19105739
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A study on a special DNA nanotube assembled from two single-stranded tiles.
    Xu F; Wu T; Shi X; Pan L
    Nanotechnology; 2019 Mar; 30(11):115602. PubMed ID: 30566929
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fluorescent single walled carbon nanotube/silica composite materials.
    Satishkumar BC; Doorn SK; Baker GA; Dattelbaum AM
    ACS Nano; 2008 Nov; 2(11):2283-90. PubMed ID: 19206394
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of flexibility on hydrophobic behavior of nanotube water channels.
    Andreev S; Reichman D; Hummer G
    J Chem Phys; 2005 Nov; 123(19):194502. PubMed ID: 16321095
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In situ fabrication of Ag3PO4/TiO2 nanotube heterojunctions with enhanced visible-light photocatalytic activity.
    Tong ZW; Yang D; Sun YY; Tian Y; Jiang ZY
    Phys Chem Chem Phys; 2015 May; 17(18):12199-206. PubMed ID: 25884048
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular Dynamics Simulations of Supramolecular Anticancer Nanotubes.
    Kang M; Chakraborty K; Loverde SM
    J Chem Inf Model; 2018 Jun; 58(6):1164-1168. PubMed ID: 29856610
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Boron nitride nanotube as a delivery system for platinum drugs: Drug encapsulation and diffusion coefficient prediction.
    Khatti Z; Hashemianzadeh SM
    Eur J Pharm Sci; 2016 Jun; 88():291-7. PubMed ID: 27084121
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microfluidic assembly of a nano-in-micro dual drug delivery platform composed of halloysite nanotubes and a pH-responsive polymer for colon cancer therapy.
    Li W; Liu D; Zhang H; Correia A; Mäkilä E; Salonen J; Hirvonen J; Santos HA
    Acta Biomater; 2017 Jan; 48():238-246. PubMed ID: 27815166
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Polydopamine Nanotubes as an Effective Fluorescent Quencher for Highly Sensitive and Selective Detection of Biomolecules Assisted with Exonuclease III Amplification.
    Fan D; Zhu X; Zhai Q; Wang E; Dong S
    Anal Chem; 2016 Sep; 88(18):9158-65. PubMed ID: 27575055
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Supramolecular Nanotube Reactors for Production of Imine Polymers with Controlled Conformation, Size, and Chirality.
    Kameta N; Ding W
    Small; 2019 May; 15(19):e1900682. PubMed ID: 30920781
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Controlling nanotube dimensions: correlation between composition, diameter, and internal energy of single-walled mixed oxide nanotubes.
    Konduri S; Mukherjee S; Nair S
    ACS Nano; 2007 Dec; 1(5):393-402. PubMed ID: 19206659
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Photo-degradation of acid-red 3B dye catalyzed by TiO2 nanotubes.
    Jiang F; Zheng SR; Zheng Z; Xu ZY; Wang YJ
    J Environ Sci (China); 2006; 18(4):783-7. PubMed ID: 17078561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.