These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 30020055)

  • 1. Fatigue Incident Antecedents, Consequences, and Aviation Operational Risk Management Resources.
    Morris MB; Wiedbusch MD; Gunzelmann G
    Aerosp Med Hum Perform; 2018 Aug; 89(8):708-716. PubMed ID: 30020055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue-Related Aviation Mishaps.
    Gaines AR; Morris MB; Gunzelmann G
    Aerosp Med Hum Perform; 2020 May; 91(5):440-447. PubMed ID: 32327018
    [No Abstract]   [Full Text] [Related]  

  • 3. Aircrew Fatigue Perceptions, Fatigue Mitigation Strategies, and Circadian Typology.
    Morris MB; Howland JP; Amaddio KM; Gunzelmann G
    Aerosp Med Hum Perform; 2020 Apr; 91(4):363-368. PubMed ID: 32493560
    [No Abstract]   [Full Text] [Related]  

  • 4. Aircrew Actual vs. Prescriptive Sleep Schedules and Resulting Fatigue Estimates.
    Morris MB; Veksler BZ; Krusmark MA; Gaines AR; Jantscher HL; Gunzelmann G
    Aerosp Med Hum Perform; 2021 Oct; 92(10):806-814. PubMed ID: 34642001
    [No Abstract]   [Full Text] [Related]  

  • 5. Crew resource management: a simulator study comparing fixed versus formed aircrews.
    Barker JM; Clothier CC; Woody JR; McKinney EH; Brown JL
    Aviat Space Environ Med; 1996 Jan; 67(1):3-7. PubMed ID: 8929198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatigue proofing: The role of protective behaviours in mediating fatigue-related risk in a defence aviation environment.
    Dawson D; Cleggett C; Thompson K; Thomas MJ
    Accid Anal Prev; 2017 Feb; 99(Pt B):465-468. PubMed ID: 26555252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human error and crew resource management failures in Naval aviation mishaps: a review of U.S. Naval Safety Center data, 1990-96.
    Wiegmann DA; Shappell SA
    Aviat Space Environ Med; 1999 Dec; 70(12):1147-51. PubMed ID: 10596766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An exploration of the utility of mathematical modeling predicting fatigue from sleep/wake history and circadian phase applied in accident analysis and prevention: the crash of Comair Flight 5191.
    Pruchnicki SA; Wu LJ; Belenky G
    Accid Anal Prev; 2011 May; 43(3):1056-61. PubMed ID: 21376901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and validation of Aviation Causal Contributors for Error Reporting Systems (ACCERS).
    Baker DP; Krokos KJ
    Hum Factors; 2007 Apr; 49(2):185-99. PubMed ID: 17447662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatigue countermeasures in aviation.
    Caldwell JA; Mallis MM; Caldwell JL; Paul MA; Miller JC; Neri DF;
    Aviat Space Environ Med; 2009 Jan; 80(1):29-59. PubMed ID: 19180856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flight crew fatigue management in a more flexible regulatory environment: an overview of the New Zealand aviation industry.
    Signal TL; Ratieta D; Gander PH
    Chronobiol Int; 2008 Apr; 25(2):373-88. PubMed ID: 18484369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alcohol violations and aviation accidents: findings from the U.S. mandatory alcohol testing program.
    Li G; Baker SP; Qiang Y; Rebok GW; McCarthy ML
    Aviat Space Environ Med; 2007 May; 78(5):510-3. PubMed ID: 17539446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crew familiarity: operational experience, non-technical performance, and error management.
    Thomas MJ; Petrilli RM
    Aviat Space Environ Med; 2006 Jan; 77(1):41-5. PubMed ID: 16422452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flight safety in Alaska: comparing attitudes and practices of high- and low-risk air carriers.
    Conway GA; Mode NA; Berman MD; Martin S; Hill A
    Aviat Space Environ Med; 2005 Jan; 76(1):52-7. PubMed ID: 15672987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human factors in aircraft incidents: results of a 7-year study.
    Billings CE; Reynard WD
    Aviat Space Environ Med; 1984 Oct; 55(10):960-5. PubMed ID: 6497826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UK Military Rotary-Wing Accidents: 2000-2015.
    Bushby AJR; Powell-Dunford N; Porter WD
    Aerosp Med Hum Perform; 2018 Sep; 89(9):842-847. PubMed ID: 30126518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. U.S. naval aviation mishaps, 1977-92: differences between single- and dual-piloted aircraft.
    Shappell SA; Wiegmann DA
    Aviat Space Environ Med; 1996 Jan; 67(1):65-9. PubMed ID: 8929207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Importance of Validating Sleep Behavior Models for Fatigue Management Software in Military Aviation.
    Paul MA; Hursh SR; Love RJ
    Mil Med; 2020 Dec; 185(11-12):e1986-e1991. PubMed ID: 32789473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preventing G-induced loss of consciousness: 20 years of operational experience.
    Lyons TJ; Davenport C; Copley GB; Binder H; Grayson K; Kraft NO
    Aviat Space Environ Med; 2004 Feb; 75(2):150-3. PubMed ID: 14960050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does Implementation of Biomathematical Models Mitigate Fatigue and Fatigue-related Risks in Emergency Medical Services Operations? A Systematic Review.
    James FO; Waggoner LB; Weiss PM; Patterson PD; Higgins JS; Lang ES; Van Dongen HPA
    Prehosp Emerg Care; 2018 Feb; 22(sup1):69-80. PubMed ID: 29324070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.