These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 30020084)

  • 21. Morphological and mechanical determinants of cellular uptake of deformable nanoparticles.
    Chen L; Li X; Zhang Y; Chen T; Xiao S; Liang H
    Nanoscale; 2018 Jul; 10(25):11969-11979. PubMed ID: 29904774
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of cell size on cellular uptake of gold nanoparticles.
    Wang X; Hu X; Li J; Russe AC; Kawazoe N; Yang Y; Chen G
    Biomater Sci; 2016 Jun; 4(6):970-8. PubMed ID: 27095054
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intracellular uptake, transport, and processing of gold nanostructures.
    Chithrani DB
    Mol Membr Biol; 2010 Oct; 27(7):299-311. PubMed ID: 20929337
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chitosan Nanoparticles for Nuclear Targeting: The Effect of Nanoparticle Size and Nuclear Localization Sequence Density.
    Tammam SN; Azzazy HM; Breitinger HG; Lamprecht A
    Mol Pharm; 2015 Dec; 12(12):4277-89. PubMed ID: 26465978
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanoparticle processing: Understanding and controlling aggregation.
    Shrestha S; Wang B; Dutta P
    Adv Colloid Interface Sci; 2020 May; 279():102162. PubMed ID: 32334131
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Size dependence of gold nanoparticle interactions with a supported lipid bilayer: A QCM-D study.
    Bailey CM; Kamaloo E; Waterman KL; Wang KF; Nagarajan R; Camesano TA
    Biophys Chem; 2015; 203-204():51-61. PubMed ID: 26042544
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Poly(lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel.
    Feng SS; Mei L; Anitha P; Gan CW; Zhou W
    Biomaterials; 2009 Jul; 30(19):3297-306. PubMed ID: 19299012
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of the mechanical and geometrical parameters on the cellular uptake of nanoparticles: A stochastic approach.
    Iaquinta S; Khazaie S; Ishow É; Blanquart C; Fréour S; Jacquemin F
    Int J Numer Method Biomed Eng; 2022 Jun; 38(6):e3598. PubMed ID: 35343089
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Roles of nucleation, denucleation, coarsening, and aggregation kinetics in nanoparticle preparations and neurological disease.
    Skrdla PJ
    Langmuir; 2012 Mar; 28(10):4842-57. PubMed ID: 22324463
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cell membrane coated nanoparticles: next-generation therapeutics.
    Narain A; Asawa S; Chhabria V; Patil-Sen Y
    Nanomedicine (Lond); 2017 Nov; 12(21):2677-2692. PubMed ID: 28965474
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Uptake and bio-reactivity of polystyrene nanoparticles is affected by surface modifications, ageing and LPS adsorption: in vitro studies on neural tissue cells.
    Murali K; Kenesei K; Li Y; Demeter K; Környei Z; Madarász E
    Nanoscale; 2015 Mar; 7(9):4199-210. PubMed ID: 25673096
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wrapping dynamics and critical conditions for active nonspherical nanoparticle uptake.
    Xiao K; Ma R; Wu CX
    Phys Rev E; 2023 May; 107(5-1):054401. PubMed ID: 37329073
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Partitioning of nanoscale particles on a heterogeneous multicomponent lipid bilayer.
    Yang K; Yang R; Tian X; He K; Filbrun SL; Fang N; Ma Y; Yuan B
    Phys Chem Chem Phys; 2018 Nov; 20(44):28241-28248. PubMed ID: 30398246
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Curvature-Mediated Pair Interactions of Soft Nanoparticles Adhered to a Cell Membrane.
    Chen T; Zhang Y; Li X; Li C; Lu T; Xiao S; Liang H
    J Chem Theory Comput; 2021 Dec; 17(12):7850-7861. PubMed ID: 34865469
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective membrane wrapping on differently sized nanoparticles regulated by clathrin assembly: A computational model.
    Li Y; Zhang M; Niu X; Yue T
    Colloids Surf B Biointerfaces; 2022 Jun; 214():112467. PubMed ID: 35366575
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of the Spatial Distribution of Cationic Functional Groups at Nanoparticle Surfaces on Bacterial Viability and Membrane Interactions.
    Zhang Y; Hudson-Smith NV; Frand SD; Cahill MS; Davis LS; Feng ZV; Haynes CL; Hamers RJ
    J Am Chem Soc; 2020 Jun; 142(24):10814-10823. PubMed ID: 32402194
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Partner-facilitating transmembrane penetration of nanoparticles: a biological test in silico.
    Wang W; Yang R; Zhang F; Yuan B; Yang K; Ma Y
    Nanoscale; 2018 Jun; 10(24):11670-11678. PubMed ID: 29897087
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Directional and Rotational Motions of Nanoparticles on Plasma Membranes as Local Probes of Surface Tension Propagation.
    Li S; Yan Z; Luo Z; Xu Y; Huang F; Hu G; Zhang X; Yue T
    Langmuir; 2019 Apr; 35(15):5333-5341. PubMed ID: 30908057
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface-structure-regulated penetration of nanoparticles across a cell membrane.
    Li Y; Li X; Li Z; Gao H
    Nanoscale; 2012 Jun; 4(12):3768-75. PubMed ID: 22609866
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanoparticle hardness controls the internalization pathway for drug delivery.
    Li Y; Zhang X; Cao D
    Nanoscale; 2015 Feb; 7(6):2758-69. PubMed ID: 25585060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.