These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 30020200)

  • 41. Lineage of bone marrow-derived cells in atherosclerosis.
    Iwata H; Manabe I; Nagai R
    Circ Res; 2013 Jun; 112(12):1634-47. PubMed ID: 23743229
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inflammation and immune system contribution to the etiology of atherosclerosis: mechanisms and methods of assessment.
    Salisbury D; Bronas U
    Nurs Res; 2014; 63(5):375-85. PubMed ID: 25171563
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The iterative lipid impact on inflammation in atherosclerosis.
    Kraaijenhof JM; Hovingh GK; Stroes ESG; Kroon J
    Curr Opin Lipidol; 2021 Oct; 32(5):286-292. PubMed ID: 34392272
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regulation of macrophage immunometabolism in atherosclerosis.
    Koelwyn GJ; Corr EM; Erbay E; Moore KJ
    Nat Immunol; 2018 Jun; 19(6):526-537. PubMed ID: 29777212
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Macrophages and immune cells in atherosclerosis: recent advances and novel concepts.
    Cochain C; Zernecke A
    Basic Res Cardiol; 2015; 110(4):34. PubMed ID: 25947006
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Maintenance of Macrophage Redox Status by ChREBP Limits Inflammation and Apoptosis and Protects against Advanced Atherosclerotic Lesion Formation.
    Sarrazy V; Sore S; Viaud M; Rignol G; Westerterp M; Ceppo F; Tanti JF; Guinamard R; Gautier EL; Yvan-Charvet L
    Cell Rep; 2015 Oct; 13(1):132-144. PubMed ID: 26411684
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of macrophage scavenger receptors in atherosclerosis.
    Kzhyshkowska J; Neyen C; Gordon S
    Immunobiology; 2012 May; 217(5):492-502. PubMed ID: 22437077
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prevention of oxLDL uptake leads to decreased atherosclerosis in hematopoietic NPC1-deficient Ldlr
    Jeurissen MLJ; Walenbergh SMA; Houben T; Gijbels MJJ; Li J; Hendrikx T; Oligschlaeger Y; van Gorp PJ; Binder CJ; Donners MMPC; Shiri-Sverdlov R
    Atherosclerosis; 2016 Dec; 255():59-65. PubMed ID: 27816810
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metabolic Reprogramming in Mitochondria of Myeloid Cells.
    Zuo H; Wan Y
    Cells; 2019 Dec; 9(1):. PubMed ID: 31861356
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CD70 limits atherosclerosis and promotes macrophage function.
    Winkels H; Meiler S; Smeets E; Lievens D; Engel D; Spitz C; Bürger C; Rinne P; Beckers L; Dandl A; Reim S; Ahmadsei M; Van den Bossche J; Holdt LM; Megens RT; Schmitt M; de Winther M; Biessen EA; Borst J; Faussner A; Weber C; Lutgens E; Gerdes N
    Thromb Haemost; 2017 Jan; 117(1):164-175. PubMed ID: 27786334
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Impact of Macrophages in Atherosclerosis.
    Lu X
    Curr Med Chem; 2016; 23(18):1926-37. PubMed ID: 27121189
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of Metabolic Reprogramming in Pulmonary Innate Immunity and Its Impact on Lung Diseases.
    Michaeloudes C; Bhavsar PK; Mumby S; Xu B; Hui CKM; Chung KF; Adcock IM
    J Innate Immun; 2020; 12(1):31-46. PubMed ID: 31786568
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Myeloperoxidase, modified lipoproteins, and atherogenesis.
    Nicholls SJ; Hazen SL
    J Lipid Res; 2009 Apr; 50 Suppl(Suppl):S346-51. PubMed ID: 19091698
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CD8+ T Cells Regulate Monopoiesis and Circulating Ly6C-high Monocyte Levels in Atherosclerosis in Mice.
    Cochain C; Koch M; Chaudhari SM; Busch M; Pelisek J; Boon L; Zernecke A
    Circ Res; 2015 Jul; 117(3):244-53. PubMed ID: 25991812
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regulation of gene expression in atherosclerosis: insights from microarray studies in monocytes/macrophages.
    Laguna JC; Alegret M
    Pharmacogenomics; 2012 Mar; 13(4):477-95. PubMed ID: 22380002
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Loss of
    Babaev VR; Huang J; Ding L; Zhang Y; May JM; Linton MF
    Front Immunol; 2018; 9():215. PubMed ID: 29487597
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Natural killer cells in the innate immunity network of atherosclerosis.
    Bonaccorsi I; De Pasquale C; Campana S; Barberi C; Cavaliere R; Benedetto F; Ferlazzo G
    Immunol Lett; 2015 Nov; 168(1):51-7. PubMed ID: 26384623
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Trained immunity in monocyte/macrophage: Novel mechanism of phytochemicals in the treatment of atherosclerotic cardiovascular disease.
    Wang J; Liu YM; Hu J; Chen C
    Front Pharmacol; 2023; 14():1109576. PubMed ID: 36895942
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Innate immune signals in atherosclerosis.
    Lundberg AM; Hansson GK
    Clin Immunol; 2010 Jan; 134(1):5-24. PubMed ID: 19740706
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lipid droplet-associated proteins in atherosclerosis (Review).
    Plakkal Ayyappan J; Paul A; Goo YH
    Mol Med Rep; 2016 Jun; 13(6):4527-34. PubMed ID: 27082419
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.