BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 30020281)

  • 1. Impact of the lanthanide contraction on the activity of a lanthanide-dependent methanol dehydrogenase - a kinetic and DFT study.
    Lumpe H; Pol A; Op den Camp HJM; Daumann LJ
    Dalton Trans; 2018 Aug; 47(31):10463-10472. PubMed ID: 30020281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How Lanthanide Ions Affect the Addition-Elimination Step of Methanol Dehydrogenases.
    Prejanò M; Russo N; Marino T
    Chemistry; 2020 Sep; 26(49):11334-11339. PubMed ID: 32369635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neodymium as Metal Cofactor for Biological Methanol Oxidation: Structure and Kinetics of an XoxF1-Type Methanol Dehydrogenase.
    Schmitz RA; Picone N; Singer H; Dietl A; Seifert KA; Pol A; Jetten MSM; Barends TRM; Daumann LJ; Op den Camp HJM
    mBio; 2021 Oct; 12(5):e0170821. PubMed ID: 34544276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing Lanthanide-Dependent Methanol Dehydrogenase Activity: The Assay Matters.
    Phi MT; Singer H; Zäh F; Haisch C; Schneider S; Op den Camp HJM; Daumann LJ
    Chembiochem; 2024 Mar; 25(5):e202300811. PubMed ID: 38269599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lanthanide-induced conformational change of methanol dehydrogenase involving coordination change of cofactor pyrroloquinoline quinone.
    Tsushima S
    Phys Chem Chem Phys; 2019 Oct; 21(39):21979-21983. PubMed ID: 31552950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of rare earth elements in methanol oxidation.
    Picone N; Op den Camp HJ
    Curr Opin Chem Biol; 2019 Apr; 49():39-44. PubMed ID: 30308436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DFT study of the active site of the XoxF-type natural, cerium-dependent methanol dehydrogenase enzyme.
    Bogart JA; Lewis AJ; Schelter EJ
    Chemistry; 2015 Jan; 21(4):1743-8. PubMed ID: 25421364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrroloquinoline Quinone Ethanol Dehydrogenase in Methylobacterium extorquens AM1 Extends Lanthanide-Dependent Metabolism to Multicarbon Substrates.
    Good NM; Vu HN; Suriano CJ; Subuyuj GA; Skovran E; Martinez-Gomez NC
    J Bacteriol; 2016 Nov; 198(22):3109-3118. PubMed ID: 27573017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrocatalysis of a Europium-Dependent Bacterial Methanol Dehydrogenase with Its Physiological Electron-Acceptor Cytochrome c
    Kalimuthu P; Daumann LJ; Pol A; Op den Camp HJM; Bernhardt PV
    Chemistry; 2019 Jul; 25(37):8760-8768. PubMed ID: 30908783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How Can Methanol Dehydrogenase from Methylacidiphilum fumariolicum Work with the Alien Ce
    Prejanò M; Marino T; Russo N
    Chemistry; 2017 Jun; 23(36):8652-8657. PubMed ID: 28488399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lanthanide Chemistry: From Coordination in Chemical Complexes Shaping Our Technology to Coordination in Enzymes Shaping Bacterial Metabolism.
    Martinez-Gomez NC; Vu HN; Skovran E
    Inorg Chem; 2016 Oct; 55(20):10083-10089. PubMed ID: 27588435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rare earth metals are essential for methanotrophic life in volcanic mudpots.
    Pol A; Barends TR; Dietl A; Khadem AF; Eygensteyn J; Jetten MS; Op den Camp HJ
    Environ Microbiol; 2014 Jan; 16(1):255-64. PubMed ID: 24034209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preferential Binding of Lanthanides to Methanol Dehydrogenase Evaluated with Density Functional Theory.
    Friedman R
    J Phys Chem B; 2021 Mar; 125(9):2251-2257. PubMed ID: 33645229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lanthanide-Dependent Methylotrophs of the Family
    Wegner CE; Gorniak L; Riedel S; Westermann M; Küsel K
    Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31604774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minor Actinides Can Replace Essential Lanthanides in Bacterial Life.
    Singer H; Steudtner R; Klein AS; Rulofs C; Zeymer C; Drobot B; Pol A; Cecilia Martinez-Gomez N; Op den Camp HJM; Daumann LJ
    Angew Chem Int Ed Engl; 2023 Aug; 62(31):e202303669. PubMed ID: 37074219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a novel cytochrome c
    Versantvoort W; Pol A; Daumann LJ; Larrabee JA; Strayer AH; Jetten MSM; van Niftrik L; Reimann J; Op den Camp HJM
    Biochim Biophys Acta Proteins Proteom; 2019 Jun; 1867(6):595-603. PubMed ID: 30954577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lanthanide-dependent methanol dehydrogenase from the legume symbiotic nitrogen-fixing bacterium Bradyrhizobium diazoefficiens strain USDA110.
    Wang L; Suganuma S; Hibino A; Mitsui R; Tani A; Matsumoto T; Ebihara A; Fitriyanto NA; Pertiwiningrum A; Shimada M; Hayakawa T; Nakagawa T
    Enzyme Microb Technol; 2019 Nov; 130():109371. PubMed ID: 31421721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies of pyrroloquinoline quinone species in solution and in lanthanide-dependent methanol dehydrogenases.
    Danaf NA; Kretzschmar J; Jahn B; Singer H; Pol A; Op den Camp HJM; Steudtner R; Lamb DC; Drobot B; Daumann LJ
    Phys Chem Chem Phys; 2022 Jun; 24(25):15397-15405. PubMed ID: 35704886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the chemistry of the artificial electron acceptors PES, PMS, DCPIP and Wurster's Blue in methanol dehydrogenase assays.
    Jahn B; Jonasson NSW; Hu H; Singer H; Pol A; Good NM; den Camp HJMO; Martinez-Gomez NC; Daumann LJ
    J Biol Inorg Chem; 2020 Mar; 25(2):199-212. PubMed ID: 32060650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methanol Production by "
    Hogendoorn C; Pol A; Nuijten GHL; Op den Camp HJM
    Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32631865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.