BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 30020436)

  • 1. realDB: a genome and transcriptome resource for the red algae (phylum Rhodophyta).
    Chen F; Zhang J; Chen J; Li X; Dong W; Hu J; Lin M; Liu Y; Li G; Wang Z; Zhang L
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 30020436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SAGER: a database of Symbiodiniaceae and Algal Genomic Resource.
    Yu L; Li T; Li L; Lin X; Li H; Liu C; Guo C; Lin S
    Database (Oxford); 2020 Jan; 2020():. PubMed ID: 32621601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Terpene Biosynthesis in Red Algae Is Catalyzed by Microbial Type But Not Typical Plant Terpene Synthases.
    Wei G; Jia Q; Chen X; Köllner TG; Bhattacharya D; Wong GK; Gershenzon J; Chen F
    Plant Physiol; 2019 Feb; 179(2):382-390. PubMed ID: 30538166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Rhodoexplorer Platform for Red Algal Genomics and Whole-Genome Assemblies for Several Gracilaria Species.
    Lipinska AP; Krueger-Hadfield SA; Godfroy O; Dittami SM; Ayres-Ostrock L; Bonthond G; Brillet-Guéguen L; Coelho S; Corre E; Cossard G; Destombe C; Epperlein P; Faugeron S; Ficko-Blean E; Beltrán J; Lavaut E; Le Bars A; Marchi F; Mauger S; Michel G; Potin P; Scornet D; Sotka EE; Weinberger F; Cabral de Oliveira M; Guillemin ML; Plastino EM; Valero M
    Genome Biol Evol; 2023 Jul; 15(7):. PubMed ID: 37481260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ASGARD: an open-access database of annotated transcriptomes for emerging model arthropod species.
    Zeng V; Extavour CG
    Database (Oxford); 2012; 2012():bas048. PubMed ID: 23180770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PhycoCosm, a comparative algal genomics resource.
    Grigoriev IV; Hayes RD; Calhoun S; Kamel B; Wang A; Ahrendt S; Dusheyko S; Nikitin R; Mondo SJ; Salamov A; Shabalov I; Kuo A
    Nucleic Acids Res; 2021 Jan; 49(D1):D1004-D1011. PubMed ID: 33104790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution and expression of core SWI/SNF genes in red algae.
    Stiller JW; Yang C; Collén J; Kowalczyk N; Thompson BE
    J Phycol; 2018 Dec; 54(6):879-887. PubMed ID: 30288746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alga-PrAS (Algal Protein Annotation Suite): A Database of Comprehensive Annotation in Algal Proteomes.
    Kurotani A; Yamada Y; Sakurai T
    Plant Cell Physiol; 2017 Jan; 58(1):e6. PubMed ID: 28069893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo transcriptome assembly for four species of crustose coralline algae and analysis of unique orthologous genes.
    Page TM; McDougall C; Diaz-Pulido G
    Sci Rep; 2019 Aug; 9(1):12611. PubMed ID: 31471551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome-Based Identification of the Desiccation Response Genes in Marine Red Algae Pyropia tenera (Rhodophyta) and Enhancement of Abiotic Stress Tolerance by PtDRG2 in Chlamydomonas.
    Im S; Lee HN; Jung HS; Yang S; Park EJ; Hwang MS; Jeong WJ; Choi DW
    Mar Biotechnol (NY); 2017 Jun; 19(3):232-245. PubMed ID: 28421378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unexpected conservation of the RNA splicing apparatus in the highly streamlined genome of Galdieria sulphuraria.
    Qiu H; Rossoni AW; Weber APM; Yoon HS; Bhattacharya D
    BMC Evol Biol; 2018 Apr; 18(1):41. PubMed ID: 29606099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence of ancient genome reduction in red algae (Rhodophyta).
    Qiu H; Price DC; Yang EC; Yoon HS; Bhattacharya D
    J Phycol; 2015 Aug; 51(4):624-36. PubMed ID: 26986787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial and Plastid Genomes from Coralline Red Algae Provide Insights into the Incongruent Evolutionary Histories of Organelles.
    Lee JM; Song HJ; Park SI; Lee YM; Jeong SY; Cho TO; Kim JH; Choi HG; Choi CG; Nelson WA; Fredericq S; Bhattacharya D; Yoon HS
    Genome Biol Evol; 2018 Nov; 10(11):2961-2972. PubMed ID: 30364957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstructing the complex evolutionary history of mobile plasmids in red algal genomes.
    Lee J; Kim KM; Yang EC; Miller KA; Boo SM; Bhattacharya D; Yoon HS
    Sci Rep; 2016 Mar; 6():23744. PubMed ID: 27030297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypothesis: Gene-rich plastid genomes in red algae may be an outcome of nuclear genome reduction.
    Qiu H; Lee JM; Yoon HS; Bhattacharya D
    J Phycol; 2017 Jun; 53(3):715-719. PubMed ID: 28095611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Protein families specific for plastoms in small taxonomy groups of algae and protozoa].
    Zverkov OA; Seliverstov AV; Liubetskiĭ VA
    Mol Biol (Mosk); 2012; 46(5):799-809. PubMed ID: 23156680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome analysis of the typical freshwater rhodophytes Sheathia arcuata grown under different light intensities.
    Nan F; Feng J; Lv J; Liu Q; Xie S
    PLoS One; 2018; 13(5):e0197729. PubMed ID: 29813098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mitochondrial genome of Grateloupia taiwanensis (Halymeniaceae, Rhodophyta) and comparative mitochondrial genomics of red algae.
    DePriest MS; Bhattacharya D; López-Bautista JM
    Biol Bull; 2014 Oct; 227(2):191-200. PubMed ID: 25411376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parallel evolution of highly conserved plastid genome architecture in red seaweeds and seed plants.
    Lee J; Cho CH; Park SI; Choi JW; Song HS; West JA; Bhattacharya D; Yoon HS
    BMC Biol; 2016 Sep; 14():75. PubMed ID: 27589960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative genomic analyses of transport proteins encoded within the red algae Chondrus crispus, Galdieria sulphuraria, and Cyanidioschyzon merolae
    Lee J; Ghosh S; Saier MH
    J Phycol; 2017 Jun; 53(3):503-521. PubMed ID: 28328149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.