BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 30020437)

  • 1. Extracting chemical-protein relations with ensembles of SVM and deep learning models.
    Peng Y; Rios A; Kavuluru R; Lu Z
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 30020437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical-gene relation extraction using recursive neural network.
    Lim S; Kang J
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 29961818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potent pairing: ensemble of long short-term memory networks and support vector machine for chemical-protein relation extraction.
    Mehryary F; Björne J; Salakoski T; Ginter F
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 30576487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the state of the art in biomedical relation extraction: overview of the BioCreative V chemical-disease relation (CDR) task.
    Wei CH; Peng Y; Leaman R; Davis AP; Mattingly CJ; Li J; Wiegers TC; Lu Z
    Database (Oxford); 2016; 2016():. PubMed ID: 26994911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracting chemical-protein interactions from biomedical literature via granular attention based recurrent neural networks.
    Lu H; Li L; He X; Liu Y; Zhou A
    Comput Methods Programs Biomed; 2019 Jul; 176():61-68. PubMed ID: 31200912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overview of the BioCreative VI Precision Medicine Track: mining protein interactions and mutations for precision medicine.
    Islamaj Dogan R; Kim S; Chatr-Aryamontri A; Wei CH; Comeau DC; Antunes R; Matos S; Chen Q; Elangovan A; Panyam NC; Verspoor K; Liu H; Wang Y; Liu Z; Altinel B; Hüsünbeyi ZM; Özgür A; Fergadis A; Wang CK; Dai HJ; Tran T; Kavuluru R; Luo L; Steppi A; Zhang J; Qu J; Lu Z
    Database (Oxford); 2019 Jan; 2019():. PubMed ID: 30689846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mining chemical patents with an ensemble of open systems.
    Leaman R; Wei CH; Zou C; Lu Z
    Database (Oxford); 2016; 2016():. PubMed ID: 27173521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracting chemical-protein relations using attention-based neural networks.
    Liu S; Shen F; Komandur Elayavilli R; Wang Y; Rastegar-Mojarad M; Chaudhary V; Liu H
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 30295724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical named entity recognition in patents by domain knowledge and unsupervised feature learning.
    Zhang Y; Xu J; Chen H; Wang J; Wu Y; Prakasam M; Xu H
    Database (Oxford); 2016; 2016():. PubMed ID: 27087307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multichannel Convolutional Neural Network for Biological Relation Extraction.
    Quan C; Hua L; Sun X; Bai W
    Biomed Res Int; 2016; 2016():1850404. PubMed ID: 28053977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical bi-directional attention-based RNNs for supporting document classification on protein-protein interactions affected by genetic mutations.
    Fergadis A; Baziotis C; Pappas D; Papageorgiou H; Potamianos A
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 30137284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leveraging prior knowledge for protein-protein interaction extraction with memory network.
    Zhou H; Liu Z; Ning S; Yang Y; Lang C; Lin Y; Ma K
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 30010731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical-induced disease extraction via recurrent piecewise convolutional neural networks.
    Li H; Yang M; Chen Q; Tang B; Wang X; Yan J
    BMC Med Inform Decis Mak; 2018 Jul; 18(Suppl 2):60. PubMed ID: 30066652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning of mutation-gene-drug relations from the literature.
    Lee K; Kim B; Choi Y; Kim S; Shin W; Lee S; Park S; Kim S; Tan AC; Kang J
    BMC Bioinformatics; 2018 Jan; 19(1):21. PubMed ID: 29368597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraction of chemical-protein interactions from the literature using neural networks and narrow instance representation.
    Antunes R; Matos S
    Database (Oxford); 2019 Jan; 2019():. PubMed ID: 31622463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An end-to-end deep learning architecture for extracting protein-protein interactions affected by genetic mutations.
    Tran T; Kavuluru R
    Database (Oxford); 2018 Jan; 2018():1-13. PubMed ID: 30239680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LPTK: a linguistic pattern-aware dependency tree kernel approach for the BioCreative VI CHEMPROT task.
    Warikoo N; Chang YC; Hsu WL
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 30346607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical entity recognition in patents by combining dictionary-based and statistical approaches.
    Akhondi SA; Pons E; Afzal Z; van Haagen H; Becker BF; Hettne KM; van Mulligen EM; Kors JA
    Database (Oxford); 2016; 2016():. PubMed ID: 27141091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the learning of chemical-protein interactions from literature using transfer learning and specialized word embeddings.
    Corbett P; Boyle J
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 30010749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical-induced disease relation extraction via convolutional neural network.
    Gu J; Sun F; Qian L; Zhou G
    Database (Oxford); 2017 Jan; 2017(1):. PubMed ID: 28415073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.