BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30020488)

  • 1. Multiple Modes of Adaptation: Regulatory and Structural Evolution in a Small Heat Shock Protein Gene.
    Tangwancharoen S; Moy GW; Burton RS
    Mol Biol Evol; 2018 Sep; 35(9):2110-2119. PubMed ID: 30020488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Allele-Specific Expression and Evolution of Gene Regulation Underlying Acute Heat Stress Response and Local Adaptation in the Copepod Tigriopus californicus.
    Tangwancharoen S; Semmens BX; Burton RS
    J Hered; 2020 Dec; 111(6):539-547. PubMed ID: 33141173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the molecular basis of local adaptation to thermal stress: population differences in gene expression across the transcriptome of the copepod Tigriopus californicus.
    Schoville SD; Barreto FS; Moy GW; Wolff A; Burton RS
    BMC Evol Biol; 2012 Sep; 12():170. PubMed ID: 22950661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecologically Relevant Temperature Ramping Rates Enhance the Protective Heat Shock Response in an Intertidal Ectotherm.
    Harada AE; Burton RS
    Physiol Biochem Zool; 2019; 92(2):152-162. PubMed ID: 30694107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The evolution of heat shock protein sequences, cis-regulatory elements, and expression profiles in the eusocial Hymenoptera.
    Nguyen AD; Gotelli NJ; Cahan SH
    BMC Evol Biol; 2016 Jan; 16():15. PubMed ID: 26787420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Experimental Test of Adaptive Introgression in Locally Adapted Populations of Splash Pool Copepods.
    Griffiths JS; Kawji Y; Kelly MW
    Mol Biol Evol; 2021 Apr; 38(4):1306-1316. PubMed ID: 33306808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat shock protein (Hsp) gene responses of the intertidal copepod Tigriopus japonicus to environmental toxicants.
    Rhee JS; Raisuddin S; Lee KW; Seo JS; Ki JS; Kim IC; Park HG; Lee JS
    Comp Biochem Physiol C Toxicol Pharmacol; 2009 Jan; 149(1):104-12. PubMed ID: 18722552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic variant in the HSPB1 promoter region impairs the HSP27 stress response.
    Dierick I; Irobi J; Janssens S; Theuns J; Lemmens R; Jacobs A; Corsmit E; Hersmus N; Van Den Bosch L; Robberecht W; De Jonghe P; Van Broeckhoven C; Timmerman V
    Hum Mutat; 2007 Aug; 28(8):830. PubMed ID: 17623484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consequences of
    Harada AE; Burton RS
    J Exp Biol; 2020 Feb; 223(Pt 3):. PubMed ID: 31915203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA-seq reveals regional differences in transcriptome response to heat stress in the marine snail Chlorostoma funebralis.
    Gleason LU; Burton RS
    Mol Ecol; 2015 Feb; 24(3):610-27. PubMed ID: 25524431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reverse genetics in the tide pool: knock-down of target gene expression via RNA interference in the copepod Tigriopus californicus.
    Barreto FS; Schoville SD; Burton RS
    Mol Ecol Resour; 2015 Jul; 15(4):868-79. PubMed ID: 25487181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel microRNAs are associated with population divergence in transcriptional response to thermal stress in an intertidal copepod.
    Graham AM; Barreto FS
    Mol Ecol; 2019 Feb; 28(3):584-599. PubMed ID: 30548575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus.
    Fangue NA; Hofmeister M; Schulte PM
    J Exp Biol; 2006 Aug; 209(Pt 15):2859-72. PubMed ID: 16857869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into function and regulation of small heat shock protein 25 (HSPB1) in a mouse model with targeted gene disruption.
    Huang L; Min JN; Masters S; Mivechi NF; Moskophidis D
    Genesis; 2007 Aug; 45(8):487-501. PubMed ID: 17661394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid breakdown weakens under thermal stress in population crosses of the copepod Tigriopus californicus.
    Willett CS
    J Hered; 2012; 103(1):103-14. PubMed ID: 22016434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The intertidal copepod Tigriopus japonicus small heat shock protein 20 gene (Hsp20) enhances thermotolerance of transformed Escherichia coli.
    Seo JS; Lee YM; Park HG; Lee JS
    Biochem Biophys Res Commun; 2006 Feb; 340(3):901-8. PubMed ID: 16403454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation in developmental temperature alters adulthood plasticity of thermal tolerance in
    Healy TM; Bock AK; Burton RS
    J Exp Biol; 2019 Nov; 222(Pt 22):. PubMed ID: 31597734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogeny disambiguates the evolution of heat-shock cis-regulatory elements in Drosophila.
    Tian S; Haney RA; Feder ME
    PLoS One; 2010 May; 5(5):e10669. PubMed ID: 20498853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation to a latitudinal thermal gradient within a widespread copepod species: the contributions of genetic divergence and phenotypic plasticity.
    Pereira RJ; Sasaki MC; Burton RS
    Proc Biol Sci; 2017 Apr; 284(1853):. PubMed ID: 28446698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rearing temperature conditions (constant vs. thermocycle) affect daily rhythms of thermal tolerance and sensing in zebrafish.
    de Alba G; López-Olmeda JF; Sánchez-Vázquez FJ
    J Therm Biol; 2021 Apr; 97():102880. PubMed ID: 33863444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.