These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30020551)

  • 21. Predicting small ligand binding sites in proteins using backbone structure.
    Bordner AJ
    Bioinformatics; 2008 Dec; 24(24):2865-71. PubMed ID: 18940825
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PSSM-based prediction of DNA binding sites in proteins.
    Ahmad S; Sarai A
    BMC Bioinformatics; 2005 Feb; 6():33. PubMed ID: 15720719
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enabling full-length evolutionary profiles based deep convolutional neural network for predicting DNA-binding proteins from sequence.
    Chauhan S; Ahmad S
    Proteins; 2020 Jan; 88(1):15-30. PubMed ID: 31228283
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis and prediction of DNA-binding proteins and their binding residues based on composition, sequence and structural information.
    Ahmad S; Gromiha MM; Sarai A
    Bioinformatics; 2004 Mar; 20(4):477-86. PubMed ID: 14990443
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure-based prediction of protein- peptide binding regions using Random Forest.
    Taherzadeh G; Zhou Y; Liew AW; Yang Y
    Bioinformatics; 2018 Feb; 34(3):477-484. PubMed ID: 29028926
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D RNA and Functional Interactions from Evolutionary Couplings.
    Weinreb C; Riesselman AJ; Ingraham JB; Gross T; Sander C; Marks DS
    Cell; 2016 May; 165(4):963-75. PubMed ID: 27087444
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein 3D structure computed from evolutionary sequence variation.
    Marks DS; Colwell LJ; Sheridan R; Hopf TA; Pagnani A; Zecchina R; Sander C
    PLoS One; 2011; 6(12):e28766. PubMed ID: 22163331
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sequence based residue depth prediction using evolutionary information and predicted secondary structure.
    Zhang H; Zhang T; Chen K; Shen S; Ruan J; Kurgan L
    BMC Bioinformatics; 2008 Sep; 9():388. PubMed ID: 18803867
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning.
    Adhikari B; Hou J; Cheng J
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):84-96. PubMed ID: 29047157
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comprehensive comparative review of sequence-based predictors of DNA- and RNA-binding residues.
    Yan J; Friedrich S; Kurgan L
    Brief Bioinform; 2016 Jan; 17(1):88-105. PubMed ID: 25935161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of evolutionary information in prediction of aromatic-backbone NH interactions in proteins.
    Kaur H; Raghava GP
    FEBS Lett; 2004 Apr; 564(1-2):47-57. PubMed ID: 15094041
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The ConSurf-HSSP database: the mapping of evolutionary conservation among homologs onto PDB structures.
    Glaser F; Rosenberg Y; Kessel A; Pupko T; Ben-Tal N
    Proteins; 2005 Feb; 58(3):610-7. PubMed ID: 15614759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of protein-protein interaction sites from weakly homologous template structures using meta-threading and machine learning.
    Maheshwari S; Brylinski M
    J Mol Recognit; 2015 Jan; 28(1):35-48. PubMed ID: 26268369
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of Protein Allosteric Sites with Transfer Entropy and Spatial Neighbor-Based Evolutionary Information Learned by an Ensemble Model.
    Hu F; Chang F; Tao L; Sun X; Liu L; Zhao Y; Han Z; Li C
    J Chem Inf Model; 2024 Aug; 64(15):6197-6204. PubMed ID: 39075972
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inadequacy of Evolutionary Profiles Vis-a-vis Single Sequences in Predicting Transient DNA-Binding Sites in Proteins.
    Arya A; Mary Varghese D; Kumar Verma A; Ahmad S
    J Mol Biol; 2022 Jul; 434(13):167640. PubMed ID: 35597551
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using electrostatic potentials to predict DNA-binding sites on DNA-binding proteins.
    Jones S; Shanahan HP; Berman HM; Thornton JM
    Nucleic Acids Res; 2003 Dec; 31(24):7189-98. PubMed ID: 14654694
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting protein β-sheet contacts using a maximum entropy-based correlated mutation measure.
    Burkoff NS; Várnai C; Wild DL
    Bioinformatics; 2013 Mar; 29(5):580-7. PubMed ID: 23314126
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expanding the nitrogen regulatory protein superfamily: Homology detection at below random sequence identity.
    Kinch LN; Grishin NV
    Proteins; 2002 Jul; 48(1):75-84. PubMed ID: 12012339
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inter-protein residue covariation information unravels physically interacting protein dimers.
    Salmanian S; Pezeshk H; Sadeghi M
    BMC Bioinformatics; 2020 Dec; 21(1):584. PubMed ID: 33334319
    [TBL] [Abstract][Full Text] [Related]  

  • 40. TargetATPsite: a template-free method for ATP-binding sites prediction with residue evolution image sparse representation and classifier ensemble.
    Yu DJ; Hu J; Huang Y; Shen HB; Qi Y; Tang ZM; Yang JY
    J Comput Chem; 2013 Apr; 34(11):974-85. PubMed ID: 23288787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.