These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30020763)

  • 21. Low-Temperature Growth of Carbon Nanotube Forests Consisting of Tubes with Narrow Inner Spacing Using Co/Al/Mo Catalyst on Conductive Supports.
    Sugime H; Esconjauregui S; D'Arsié L; Yang J; Robertson AW; Oliver RA; Bhardwaj S; Cepek C; Robertson J
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16819-27. PubMed ID: 26176167
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Roll-to-roll continuous carbon nanotube sheets with high electrical conductivity.
    Zhang S; Leonhardt BE; Nguyen N; Oluwalowo A; Jolowsky C; Hao A; Liang R; Park JG
    RSC Adv; 2018 Apr; 8(23):12692-12700. PubMed ID: 35541226
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fully Packaged Carbon Nanotube Supercapacitors by Direct Ink Writing on Flexible Substrates.
    Chen B; Jiang Y; Tang X; Pan Y; Hu S
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28433-28440. PubMed ID: 28782923
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of conductive and printable nano carbon ink for wearable electronic and heating fabrics.
    Arbab AA; Memon AA; Sun KC; Choi JY; Mengal N; Sahito IA; Jeong SH
    J Colloid Interface Sci; 2019 Mar; 539():95-106. PubMed ID: 30576992
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mirage effect from thermally modulated transparent carbon nanotube sheets.
    Aliev AE; Gartstein YN; Baughman RH
    Nanotechnology; 2011 Oct; 22(43):435704. PubMed ID: 21967888
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbon nanotube buckypaper to improve fire retardancy of high-temperature/high-performance polymer composites.
    Fu X; Zhang C; Liu T; Liang R; Wang B
    Nanotechnology; 2010 Jun; 21(23):235701. PubMed ID: 20463386
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced electrically and thermally conductive free-standing graphene films with two-dimensional copper sheets as the catalyst and bridge.
    Ye H; Chen J; Hu Y; Li Y; Wang Y; Fu XZ; Sun R
    Dalton Trans; 2023 May; 52(17):5486-5495. PubMed ID: 37038930
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D Printing of Lightweight Polyimide Honeycombs with the High Specific Strength and Temperature Resistance.
    Wang C; Ma S; Li D; Zhao J; Zhou H; Wang D; Zhou D; Gan T; Wang D; Liu C; Qu C; Chen C
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15690-15700. PubMed ID: 33689262
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimation of thermal conductivity of amorphous carbon nanotube using molecular dynamics simulations.
    Ghosh MM
    J Nanosci Nanotechnol; 2013 Apr; 13(4):2961-6. PubMed ID: 23763186
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scanning thermal microscopy with heat conductive nanowire probes.
    Timofeeva M; Bolshakov A; Tovee PD; Zeze DA; Dubrovskii VG; Kolosov OV
    Ultramicroscopy; 2016 Mar; 162():42-51. PubMed ID: 26735005
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-Assembled Three-Dimensional Graphene Macrostructures: Synthesis and Applications in Supercapacitors.
    Xu Y; Shi G; Duan X
    Acc Chem Res; 2015 Jun; 48(6):1666-75. PubMed ID: 26042764
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultralow-Threshold and Lightweight Biodegradable Porous PLA/MWCNT with Segregated Conductive Networks for High-Performance Thermal Insulation and Electromagnetic Interference Shielding Applications.
    Wang G; Wang L; Mark LH; Shaayegan V; Wang G; Li H; Zhao G; Park CB
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1195-1203. PubMed ID: 29206437
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced Thermal Conductivity of Graphene Nanoplatelet-Polymer Nanocomposites Fabricated via Supercritical Fluid-Assisted in Situ Exfoliation.
    Hamidinejad SM; Chu RKM; Zhao B; Park CB; Filleter T
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1225-1236. PubMed ID: 29226667
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In silico assembly and nanomechanical characterization of carbon nanotube buckypaper.
    Cranford SW; Buehler MJ
    Nanotechnology; 2010 Jul; 21(26):265706. PubMed ID: 20534890
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Printing Carbon Nanotube-Embedded Silicone Elastomers via Direct Writing.
    Luo B; Wei Y; Chen H; Zhu Z; Fan P; Xu X; Xie B
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44796-44802. PubMed ID: 30500152
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flexible high-conductivity carbon-nanotube interconnects made by rolling and printing.
    Tawfick S; O'Brien K; Hart AJ
    Small; 2009 Nov; 5(21):2467-73. PubMed ID: 19685444
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-dimensional printing of freeform helical microstructures: a review.
    Farahani RD; Chizari K; Therriault D
    Nanoscale; 2014 Sep; 6(18):10470-85. PubMed ID: 25072812
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microcontact printing for patterning carbon nanotube/polymer composite films with electrical conductivity.
    Ogihara H; Kibayashi H; Saji T
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4891-7. PubMed ID: 22900673
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exceptional high thermal conductivity of inter-connected annular graphite structures.
    Zhuang S; Zhang F; Liu Y; Lu C
    Phys Chem Chem Phys; 2019 Dec; 21(45):25495-25505. PubMed ID: 31714563
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal conductivity from hierarchical heat sinks using carbon nanotubes and graphene nanosheets.
    Hsieh CT; Lee CE; Chen YF; Chang JK; Teng HS
    Nanoscale; 2015 Nov; 7(44):18663-70. PubMed ID: 26498343
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.