These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30020763)

  • 41. 3D structure of lightweight, conductive cellulose nanofiber foam.
    Lee H; Kim S; Shin S; Hyun J
    Carbohydr Polym; 2021 Feb; 253():117238. PubMed ID: 33278994
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 3D Printing Processability of a Thermally Conductive Compound Based on Carbon Nanofiller-Modified Thermoplastic Polyamide 12.
    Zhang Z; Gkartzou E; Jestin S; Semitekolos D; Pappas PN; Li X; Karatza A; Zouboulis P; Trompeta AF; Koutroumanis N; Galiotis C; Charitidis C; Dong H
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160460
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of Surface Microstructure on the Heat Dissipation Performance of Heat Sinks Used in Electronic Devices.
    You Y; Zhang B; Tao S; Liang Z; Tang B; Zhou R; Yuan D
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33806561
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Graphene-Carbon-Metal Composite Film for a Flexible Heat Sink.
    Cho H; Rho H; Kim JH; Chae SH; Pham TV; Seo TH; Kim HY; Ha JS; Kim HC; Lee SH; Kim MJ
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40801-40809. PubMed ID: 29064660
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spray-Coated Multiwalled Carbon Nanotube Composite Electrodes for Thermal Energy Scavenging Electrochemical Cells.
    Holubowitch NE; Landon J; Lippert CA; Craddock JD; Weisenberger MC; Liu K
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22159-67. PubMed ID: 27510029
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nanoengineering heat transfer performance at carbon nanotube interfaces.
    Xu Z; Buehler MJ
    ACS Nano; 2009 Sep; 3(9):2767-75. PubMed ID: 19702296
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Continuous Carbon Nanotube-Ultrathin Graphite Hybrid Foams for Increased Thermal Conductivity and Suppressed Subcooling in Composite Phase Change Materials.
    Kholmanov I; Kim J; Ou E; Ruoff RS; Shi L
    ACS Nano; 2015 Dec; 9(12):11699-707. PubMed ID: 26529570
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thermal management of thermoacoustic sound projectors using a free-standing carbon nanotube aerogel sheet as a heat source.
    Aliev AE; Mayo NK; Baughman RH; Avirovik D; Priya S; Zarnetske MR; Blottman JB
    Nanotechnology; 2014 Oct; 25(40):405704. PubMed ID: 25213658
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Printing graphene-carbon nanotube-ionic liquid gel on graphene paper: Towards flexible electrodes with efficient loading of PtAu alloy nanoparticles for electrochemical sensing of blood glucose.
    He W; Sun Y; Xi J; Abdurhman AA; Ren J; Duan H
    Anal Chim Acta; 2016 Jan; 903():61-8. PubMed ID: 26709299
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fabrication and molecular dynamics analyses of highly thermal conductive reduced graphene oxide films at ultra-high temperatures.
    Huang Y; Gong Q; Zhang Q; Shao Y; Wang J; Jiang Y; Zhao M; Zhuang D; Liang J
    Nanoscale; 2017 Feb; 9(6):2340-2347. PubMed ID: 28139800
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Density-tunable lightweight polymer composites with dual-functional ability of efficient EMI shielding and heat dissipation.
    Lee SH; Yu S; Shahzad F; Kim WN; Park C; Hong SM; Koo CM
    Nanoscale; 2017 Sep; 9(36):13432-13440. PubMed ID: 28696464
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Carbon Nanotube Sheet-Synthesis and Applications.
    Chitranshi M; Pujari A; Ng V; Chen D; Chauhan D; Hudepohl R; Saleminik M; Kim SY; Kubley A; Shanov V; Schulz M
    Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33066526
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reinforced carbon nanotubes as electrically conducting and flexible films for space applications.
    Atar N; Grossman E; Gouzman I; Bolker A; Hanein Y
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20400-7. PubMed ID: 25366559
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Macroscopic Carbon Nanotube-based 3D Monoliths.
    Du R; Zhao Q; Zhang N; Zhang J
    Small; 2015 Jul; 11(27):3263-89. PubMed ID: 25740457
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular dynamics simulations of thermal transport in porous nanotube network structures.
    Varshney V; Roy AK; Froudakis G; Farmer BL
    Nanoscale; 2011 Sep; 3(9):3679-84. PubMed ID: 21808788
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ultrahigh Thermal Conductive yet Superflexible Graphene Films.
    Peng L; Xu Z; Liu Z; Guo Y; Li P; Gao C
    Adv Mater; 2017 Jul; 29(27):. PubMed ID: 28498620
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interfacial heat flow in carbon nanotube suspensions.
    Huxtable ST; Cahill DG; Shenogin S; Xue L; Ozisik R; Barone P; Usrey M; Strano MS; Siddons G; Shim M; Keblinski P
    Nat Mater; 2003 Nov; 2(11):731-4. PubMed ID: 14556001
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Highly conductive carbon nanotube buckypapers with improved doping stability via conjugational cross-linking.
    Chen IW; Liang R; Zhao H; Wang B; Zhang C
    Nanotechnology; 2011 Dec; 22(48):485708. PubMed ID: 22072011
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Unusual Thermal Conductivity of Carbon Nanosheets with Self-Emerged Graphitic Carbon Dots.
    Son SY; Jo HN; Park M; Jung GY; Lee DS; Lee S; Joh HI
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13616-13623. PubMed ID: 30892009
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Free-standing highly conductive transparent ultrathin single-walled carbon nanotube films.
    Liu Q; Fujigaya T; Cheng HM; Nakashima N
    J Am Chem Soc; 2010 Nov; 132(46):16581-6. PubMed ID: 21028804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.