These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30020763)

  • 61. Intrinsic Thermal Desorption in a 3D Printed Multifunctional Composite CO
    Thompson JF; Bellerjeau C; Marinick G; Osio-Norgaard J; Evans A; Carry P; Street RA; Petit C; Whiting GL
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43337-43343. PubMed ID: 31647628
    [TBL] [Abstract][Full Text] [Related]  

  • 62. High-field transport and thermal reliability of sorted carbon nanotube network devices.
    Behnam A; Sangwan VK; Zhong X; Lian F; Estrada D; Jariwala D; Hoag AJ; Lauhon LJ; Marks TJ; Hersam MC; Pop E
    ACS Nano; 2013 Jan; 7(1):482-90. PubMed ID: 23259715
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Highly compressible 3D periodic graphene aerogel microlattices.
    Zhu C; Han TY; Duoss EB; Golobic AM; Kuntz JD; Spadaccini CM; Worsley MA
    Nat Commun; 2015 Apr; 6():6962. PubMed ID: 25902277
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Three-dimensional Printing of Silver Microarchitectures Using Newtonian Nanoparticle Inks.
    Lee S; Kim JH; Wajahat M; Jeong H; Chang WS; Cho SH; Kim JT; Seol SK
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18918-18924. PubMed ID: 28541035
    [TBL] [Abstract][Full Text] [Related]  

  • 65. High porosity and light weight graphene foam heat sink and phase change material container for thermal management.
    Zehri A; Samani MK; Latorre MG; Nylander A; Nilsson T; Fu Y; Wang N; Ye L; Liu J
    Nanotechnology; 2020 Jun; 31(42):424003. PubMed ID: 32597397
    [TBL] [Abstract][Full Text] [Related]  

  • 66. 3D Printing of Carbon Nanotubes-Based Microsupercapacitors.
    Yu W; Zhou H; Li BQ; Ding S
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4597-4604. PubMed ID: 28094916
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Nanoscale infiltration behaviour and through-thickness permeability of carbon nanotube buckypapers.
    Wang S; Haldane D; Liang R; Smithyman J; Zhang C; Wang B
    Nanotechnology; 2013 Jan; 24(1):015704. PubMed ID: 23221271
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Enhanced physicochemical properties of polydimethylsiloxane based microfluidic devices and thin films by incorporating synthetic micro-diamond.
    Waheed S; Cabot JM; Macdonald NP; Kalsoom U; Farajikhah S; Innis PC; Nesterenko PN; Lewis TW; Breadmore MC; Paull B
    Sci Rep; 2017 Nov; 7(1):15109. PubMed ID: 29118385
    [TBL] [Abstract][Full Text] [Related]  

  • 69. 3D Printable concentrated liquid metal composite with high thermal conductivity.
    Moon S; Kim H; Lee K; Park J; Kim Y; Choi SQ
    iScience; 2021 Oct; 24(10):103183. PubMed ID: 34703989
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Transparent conductive films consisting of ultralarge graphene sheets produced by Langmuir-Blodgett assembly.
    Zheng Q; Ip WH; Lin X; Yousefi N; Yeung KK; Li Z; Kim JK
    ACS Nano; 2011 Jul; 5(7):6039-51. PubMed ID: 21692470
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Modification of carbon nanotube electrodes with 1-pyrenebutanoic acid, succinimidyl ester for enhanced bioelectrocatalysis.
    Strack G; Nichols R; Atanassov P; Luckarift HR; Johnson GR
    Methods Mol Biol; 2013; 1051():217-28. PubMed ID: 23934807
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Tailoring Dense, Orientation-Tunable, and Interleavedly Structured Carbon-Based Heat Dissipation Plates.
    Peng L; Yu H; Chen C; He Q; Zhang H; Zhao F; Qin M; Feng Y; Feng W
    Adv Sci (Weinh); 2023 Mar; 10(7):e2205962. PubMed ID: 36627131
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Laser printing of nanoparticle toner enables digital control of micropatterned carbon nanotube growth.
    Polsen ES; Stevens AG; Hart AJ
    ACS Appl Mater Interfaces; 2013 May; 5(9):3656-62. PubMed ID: 23438258
    [TBL] [Abstract][Full Text] [Related]  

  • 74. High through-plane thermal conduction of graphene nanoflake filled polymer composites melt-processed in an L-shape kinked tube.
    Jung H; Yu S; Bae NS; Cho SM; Kim RH; Cho SH; Hwang I; Jeong B; Ryu JS; Hwang J; Hong SM; Koo CM; Park C
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15256-62. PubMed ID: 26120871
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Crystallite Size Effect on Thermal Conductive Properties of Nonwoven Nanocellulose Sheets.
    Uetani K; Okada T; Oyama HT
    Biomacromolecules; 2015 Jul; 16(7):2220-7. PubMed ID: 26106810
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Inkjet printing of flexible high-performance carbon nanotube transparent conductive films by "coffee ring effect".
    Shimoni A; Azoubel S; Magdassi S
    Nanoscale; 2014 Oct; 6(19):11084-9. PubMed ID: 25014193
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose.
    Li T; Song J; Zhao X; Yang Z; Pastel G; Xu S; Jia C; Dai J; Chen C; Gong A; Jiang F; Yao Y; Fan T; Yang B; Wågberg L; Yang R; Hu L
    Sci Adv; 2018 Mar; 4(3):eaar3724. PubMed ID: 29536048
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Alternative nanostructures for thermophones.
    Aliev AE; Mayo NK; Jung de Andrade M; Robles RO; Fang S; Baughman RH; Zhang M; Chen Y; Lee JA; Kim SJ
    ACS Nano; 2015 May; 9(5):4743-56. PubMed ID: 25748853
    [TBL] [Abstract][Full Text] [Related]  

  • 79. BN Nanosheet/Polymer Films with Highly Anisotropic Thermal Conductivity for Thermal Management Applications.
    Wu Y; Xue Y; Qin S; Liu D; Wang X; Hu X; Li J; Wang X; Bando Y; Golberg D; Chen Y; Gogotsi Y; Lei W
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43163-43170. PubMed ID: 29160066
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Highly conductive and transparent single-walled carbon nanotube thin films from ethanol by floating catalyst chemical vapor deposition.
    Ding EX; Jiang H; Zhang Q; Tian Y; Laiho P; Hussain A; Liao Y; Wei N; Kauppinen EI
    Nanoscale; 2017 Nov; 9(44):17601-17609. PubMed ID: 29114684
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.