These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Mechanosensory encoding of forces in walking uphill and downhill: force feedback can stabilize leg movements in stick insects. Zill SN; Dallmann CJ; Zyhowski W; Chaudhry H; Gebehart C; Szczecinski NS J Neurophysiol; 2024 Feb; 131(2):198-215. PubMed ID: 38166479 [TBL] [Abstract][Full Text] [Related]
5. Effects of force detecting sense organs on muscle synergies are correlated with their response properties. Zill SN; Neff D; Chaudhry S; Exter A; Schmitz J; Büschges A Arthropod Struct Dev; 2017 Jul; 46(4):564-578. PubMed ID: 28552666 [TBL] [Abstract][Full Text] [Related]
6. Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control. Dallmann CJ; Dürr V; Schmitz J Proc Biol Sci; 2016 Jan; 283(1823):. PubMed ID: 26791608 [TBL] [Abstract][Full Text] [Related]
7. Positive force feedback in development of substrate grip in the stick insect tarsus. Zill SN; Chaudhry S; Exter A; Büschges A; Schmitz J Arthropod Struct Dev; 2014 Sep; 43(5):441-55. PubMed ID: 24951882 [TBL] [Abstract][Full Text] [Related]
8. Force encoding in stick insect legs delineates a reference frame for motor control. Zill SN; Schmitz J; Chaudhry S; Büschges A J Neurophysiol; 2012 Sep; 108(5):1453-72. PubMed ID: 22673329 [TBL] [Abstract][Full Text] [Related]
9. Sensory signals of unloading in insects are tuned to distinguish leg slipping from load variations in gait: experimental and modeling studies. Harris CM; Szczecinski NS; Büschges A; Zill SN J Neurophysiol; 2022 Oct; 128(4):790-807. PubMed ID: 36043841 [TBL] [Abstract][Full Text] [Related]
10. Contributions to the understanding of gait control. Simonsen EB Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597 [TBL] [Abstract][Full Text] [Related]
11. The role of leg touchdown for the control of locomotor activity in the walking stick insect. Schmitz J; Gruhn M; Büschges A J Neurophysiol; 2015 Apr; 113(7):2309-20. PubMed ID: 25652931 [TBL] [Abstract][Full Text] [Related]
12. Motor control of an insect leg during level and incline walking. Dallmann CJ; Dürr V; Schmitz J J Exp Biol; 2019 Apr; 222(Pt 7):. PubMed ID: 30944163 [TBL] [Abstract][Full Text] [Related]
13. Directional specificity and encoding of muscle forces and loads by stick insect tibial campaniform sensilla, including receptors with round cuticular caps. Zill SN; Chaudhry S; Büschges A; Schmitz J Arthropod Struct Dev; 2013 Nov; 42(6):455-467. PubMed ID: 24126203 [TBL] [Abstract][Full Text] [Related]
14. Residual force enhancement during multi-joint leg extensions at joint- angle configurations close to natural human motion. Paternoster FK; Seiberl W; Hahn D; Schwirtz A J Biomech; 2016 Mar; 49(5):773-779. PubMed ID: 26903409 [TBL] [Abstract][Full Text] [Related]
15. Common motor mechanisms support body load in serially homologous legs of cockroaches in posture and walking. Quimby LA; Amer AS; Zill SN J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Mar; 192(3):247-66. PubMed ID: 16362305 [TBL] [Abstract][Full Text] [Related]
16. A hierarchical model for external electrical control of an insect, accounting for inter-individual variation of muscle force properties. Owaki D; Dürr V; Schmitz J Elife; 2023 Sep; 12():. PubMed ID: 37703327 [TBL] [Abstract][Full Text] [Related]
17. Sensing the effect of body load in legs: responses of tibial campaniform sensilla to forces applied to the thorax in freely standing cockroaches. Noah JA; Quimby L; Frazier SF; Zill SN J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Mar; 190(3):201-15. PubMed ID: 14727134 [TBL] [Abstract][Full Text] [Related]
18. A computational model of insect campaniform sensilla predicts encoding of forces during walking. Szczecinski NS; Dallmann CJ; Quinn RD; Zill SN Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34384067 [TBL] [Abstract][Full Text] [Related]
19. The force-velocity relationship of the human soleus muscle during submaximal voluntary lengthening actions. Pinniger GJ; Steele JR; Cresswell AG Eur J Appl Physiol; 2003 Sep; 90(1-2):191-8. PubMed ID: 14504953 [TBL] [Abstract][Full Text] [Related]