These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 30020959)
121. Mapping global mangrove canopy height by integrating Ice, Cloud, and Land Elevation Satellite-2 photon-counting LiDAR data with multi-source images. Yu J; Nie S; Liu W; Zhu X; Sun Z; Li J; Wang C; Xi X; Fan H Sci Total Environ; 2024 Aug; 939():173487. PubMed ID: 38810758 [TBL] [Abstract][Full Text] [Related]
122. Multisensor earth observations to characterize wetlands and malaria epidemiology in Ethiopia. Midekisa A; Senay GB; Wimberly MC Water Resour Res; 2014 Nov; 50(11):8791-8806. PubMed ID: 25653462 [TBL] [Abstract][Full Text] [Related]
123. Mangrove changes over the past decade in South and Southeast Brazil using spaceborne optical and SAR imagery. Lopes JPN; Nascimento WR; Diniz CG; Souza-Filho PWM An Acad Bras Cienc; 2023; 95(suppl 2):e20201533. PubMed ID: 38126516 [TBL] [Abstract][Full Text] [Related]
124. Energy-Aware Dynamic 3D Placement of Multi-Drone Sensing Fleet. Luo Y; Chen Y Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33918003 [TBL] [Abstract][Full Text] [Related]
125. A comparison of Landsat 8, RapidEye and Pleiades products for improving empirical predictions of satellite-derived bathymetry. Cahalane C; Magee A; Monteys X; Casal G; Hanafin J; Harris P Remote Sens Environ; 2019 Nov; 233():111414. PubMed ID: 31787782 [TBL] [Abstract][Full Text] [Related]
126. Comparison of multi-class and fusion of multiple single-class SegNet model for mapping karst wetland vegetation using UAV images. Deng T; Fu B; Liu M; He H; Fan D; Li L; Huang L; Gao E Sci Rep; 2022 Aug; 12(1):13270. PubMed ID: 35918459 [TBL] [Abstract][Full Text] [Related]
127. Urban Vegetation Mapping from Aerial Imagery Using Explainable AI (XAI). Abdollahi A; Pradhan B Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300478 [TBL] [Abstract][Full Text] [Related]
128. Mangrove expansion on the low wooded islands of the Great Barrier Reef. Hamylton S; Kelleway J; Rogers K; McLean R; Tynan ZN; Repina O Proc Biol Sci; 2023 Nov; 290(2010):20231183. PubMed ID: 37909075 [TBL] [Abstract][Full Text] [Related]
129. Assessing coastal bathymetry and climate change impacts on coastal ecosystems using Landsat 8 and Sentinel-2 satellite imagery. Mokhtar K; Chuah LF; Abdullah MA; Oloruntobi O; Ruslan SMM; Albasher G; Ali A; Akhtar MS Environ Res; 2023 Dec; 239(Pt 2):117314. PubMed ID: 37805186 [TBL] [Abstract][Full Text] [Related]
130. Mapping dominant annual land cover from 2009 to 2013 across Victoria, Australia using satellite imagery. Sheffield K; Morse-McNabb E; Clark R; Robson S; Lewis H Sci Data; 2015 Nov; 2():150069. PubMed ID: 26602009 [TBL] [Abstract][Full Text] [Related]
131. Multispectral analysis-ready satellite data for three East African mountain ecosystems. Bhandari N; Bald L; Wraase L; Zeuss D Sci Data; 2024 May; 11(1):473. PubMed ID: 38724591 [TBL] [Abstract][Full Text] [Related]
132. Applying a deep learning pipeline to classify land cover from low-quality historical RGB imagery. Eyster HN; Beckage B PeerJ Comput Sci; 2024; 10():e2003. PubMed ID: 38855218 [TBL] [Abstract][Full Text] [Related]
133. Comparing Pixel- and Object-Based Approaches in Effectively Classifying Wetland-Dominated Landscapes. Berhane TM; Lane CR; Wu Q; Anenkhonov OA; Chepinoga VV; Autrey BC; Liu H Remote Sens (Basel); 2018; 10(1):46. PubMed ID: 29707381 [TBL] [Abstract][Full Text] [Related]
134. Towards sustainable coastal management: aerial imagery and deep learning for high-resolution Arellano-Verdejo J; Lazcano-Hernandez HE PeerJ; 2024; 12():e18192. PubMed ID: 39329141 [TBL] [Abstract][Full Text] [Related]
135. Enhanced mangrove index: A spectral index for discrimination understorey, nypa, and mangrove trees. Prayudha B; Ulumuddin YI; Siregar V; Suyarso ; Agus SB; Prasetyo LB; Suyadi ; Avianto P; Ramadhani MR MethodsX; 2024 Jun; 12():102778. PubMed ID: 38883587 [TBL] [Abstract][Full Text] [Related]
136. Fusion of visible and thermal images improves automated detection and classification of animals for drone surveys. Krishnan BS; Jones LR; Elmore JA; Samiappan S; Evans KO; Pfeiffer MB; Blackwell BF; Iglay RB Sci Rep; 2023 Jun; 13(1):10385. PubMed ID: 37369669 [TBL] [Abstract][Full Text] [Related]
137. Efficient geospatial mapping of buildings, woodlands, water and roads from aerial imagery using deep learning. Abbas S; Almadhor A; Sampedro GA; Alsubai S; Al Hejaili A; Strážovská Ľ; Zaidi MM PeerJ Comput Sci; 2024; 10():e2039. PubMed ID: 38983232 [TBL] [Abstract][Full Text] [Related]
138. Working under the Shadow of Drones: Investigating Occupational Safety Hazards among Commercial Drone Pilots. Rahmani H; Weckman GR IISE Trans Occup Ergon Hum Factors; 2024; 12(1-2):55-67. PubMed ID: 37606444 [TBL] [Abstract][Full Text] [Related]
139. Drones for litter monitoring on coasts and rivers: suitable flight altitude and image resolution. Andriolo U; Topouzelis K; van Emmerik THM; Papakonstantinou A; Monteiro JG; Isobe A; Hidaka M; Kako S; Kataoka T; Gonçalves G Mar Pollut Bull; 2023 Oct; 195():115521. PubMed ID: 37714078 [TBL] [Abstract][Full Text] [Related]
140. A Comparative Analysis of Machine Learning with WorldView-2 Pan-Sharpened Imagery for Tea Crop Mapping. Chuang YC; Shiu YS Sensors (Basel); 2016 Apr; 16(5):. PubMed ID: 27128915 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]