BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 30020984)

  • 1. Potential biomarkers and therapeutic targets in cervical cancer: Insights from the meta-analysis of transcriptomics data within network biomedicine perspective.
    Kori M; Yalcin Arga K
    PLoS One; 2018; 13(7):e0200717. PubMed ID: 30020984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNA Biomarkers of High-Grade Cervical Intraepithelial Neoplasia in Liquid Biopsy.
    Causin RL; da Silva LS; Evangelista AF; Leal LF; Souza KCB; Pessôa-Pereira D; Matsushita GM; Reis RM; Fregnani JHTG; Marques MMC
    Biomed Res Int; 2021; 2021():6650966. PubMed ID: 33954190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systems biomarkers for papillary thyroid cancer prognosis and treatment through multi-omics networks.
    Gulfidan G; Soylu M; Demirel D; Erdonmez HBC; Beklen H; Ozbek Sarica P; Arga KY; Turanli B
    Arch Biochem Biophys; 2022 Jan; 715():109085. PubMed ID: 34800440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human Papillomavirus 16 Oncoproteins Downregulate the Expression of miR-148a-3p, miR-190a-5p, and miR-199b-5p in Cervical Cancer.
    Han MS; Lee JM; Kim SN; Kim JH; Kim HS
    Biomed Res Int; 2018; 2018():1942867. PubMed ID: 30627542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular pathogenesis of breast cancer: impact of miR-99a-5p and miR-99a-3p regulation on oncogenic genes.
    Shinden Y; Hirashima T; Nohata N; Toda H; Okada R; Asai S; Tanaka T; Hozaka Y; Ohtsuka T; Kijima Y; Seki N
    J Hum Genet; 2021 May; 66(5):519-534. PubMed ID: 33177704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long noncoding RNA NEAT1 promotes the growth of cervical cancer cells via sponging miR-9-5p.
    Xie Q; Lin S; Zheng M; Cai Q; Tu Y
    Biochem Cell Biol; 2019 Apr; 97(2):100-108. PubMed ID: 30096244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human papillomavirus type 16 reduces the expression of microRNA-218 in cervical carcinoma cells.
    Martinez I; Gardiner AS; Board KF; Monzon FA; Edwards RP; Khan SA
    Oncogene; 2008 Apr; 27(18):2575-82. PubMed ID: 17998940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MicroRNA-505-5p functions as a tumor suppressor by targeting cyclin-dependent kinase 5 in cervical cancer.
    Kapora E; Feng S; Liu W; Sakhautdinova I; Gao B; Tan W
    Biosci Rep; 2019 Jul; 39(7):. PubMed ID: 31266812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNA expression profiling and Notch1 and Notch2 expression in minimal deviation adenocarcinoma of uterine cervix.
    Lee H; Kim KR; Cho NH; Hong SR; Jeong H; Kwon SY; Park KH; An HJ; Kim TH; Kim I; Yoon HK; Suh KS; Min KO; Choi HJ; Park JY; Yoo CW; Lee YS; Lee HJ; Lee WS; Park CS; Lee Y;
    World J Surg Oncol; 2014 Nov; 12():334. PubMed ID: 25381598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA expression in cervical cancer: Novel diagnostic and prognostic biomarkers.
    Gao C; Zhou C; Zhuang J; Liu L; Liu C; Li H; Liu G; Wei J; Sun C
    J Cell Biochem; 2018 Aug; 119(8):7080-7090. PubMed ID: 29737570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential expression profiles of microRNAs as potential biomarkers for the early diagnosis of lung cancer.
    Zhang Y; Sui J; Shen X; Li C; Yao W; Hong W; Peng H; Pu Y; Yin L; Liang G
    Oncol Rep; 2017 Jun; 37(6):3543-3553. PubMed ID: 28498428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiomics Analysis of Tumor Microenvironment Reveals Gata2 and miRNA-124-3p as Potential Novel Biomarkers in Ovarian Cancer.
    Gov E; Kori M; Arga KY
    OMICS; 2017 Oct; 21(10):603-615. PubMed ID: 28937943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of miR-409-3p in regulation of HPV16/18-E6 mRNA in human cervical high-grade squamous intraepithelial lesions.
    Sommerova L; Anton M; Bouchalova P; Jasickova H; Rak V; Jandakova E; Selingerova I; Bartosik M; Vojtesek B; Hrstka R
    Antiviral Res; 2019 Mar; 163():185-192. PubMed ID: 30711417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the miRNA profiles in HPV-positive and HPV-negative tonsillar tumors and a model system of human keratinocyte clones.
    Vojtechova Z; Sabol I; Salakova M; Smahelova J; Zavadil J; Turek L; Grega M; Klozar J; Prochazka B; Tachezy R
    BMC Cancer; 2016 Jul; 16():382. PubMed ID: 27377959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of the oncostatin M receptor in cervical squamous cell carcinoma cells is associated with a pro-angiogenic phenotype and increased cell motility and invasiveness.
    Winder DM; Chattopadhyay A; Muralidhar B; Bauer J; English WR; Zhang X; Karagavriilidou K; Roberts I; Pett MR; Murphy G; Coleman N
    J Pathol; 2011 Nov; 225(3):448-62. PubMed ID: 21952923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the miRNA-mRNA regulatory network in clear cell renal cell carcinomas by next-generation sequencing expression profiles.
    Müller S; Nowak K
    Biomed Res Int; 2014; 2014():948408. PubMed ID: 24977165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive analysis of ceRNA networks in HPV16- and HPV18-mediated cervical cancers reveals XIST as a pivotal competing endogenous RNA.
    Berti FCB; Mathias C; Garcia LE; Gradia DF; de Araújo-Souza PS; Cipolla GA; de Oliveira JC; Malheiros D
    Biochim Biophys Acta Mol Basis Dis; 2021 Oct; 1867(10):166172. PubMed ID: 34048924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA sequencing-based microRNA expression signature in esophageal squamous cell carcinoma: oncogenic targets by antitumor miR-143-5p and miR-143-3p regulation.
    Wada M; Goto Y; Tanaka T; Okada R; Moriya S; Idichi T; Noda M; Sasaki K; Kita Y; Kurahara H; Maemura K; Natsugoe S; Seki N
    J Hum Genet; 2020 Nov; 65(11):1019-1034. PubMed ID: 32623445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA-sequence-based microRNA expression signature in breast cancer: tumor-suppressive miR-101-5p regulates molecular pathogenesis.
    Toda H; Seki N; Kurozumi S; Shinden Y; Yamada Y; Nohata N; Moriya S; Idichi T; Maemura K; Fujii T; Horiguchi J; Kijima Y; Natsugoe S
    Mol Oncol; 2020 Feb; 14(2):426-446. PubMed ID: 31755218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation between renin-angiotensin system (RAS) related genes, type 2 diabetes, and cancer: Insights from metanalysis of transcriptomics data.
    Pereira LX; Alves da Silva LC; de Oliveira Feitosa A; Santos Ferreira RJ; Fernandes Duarte AK; da Conceição V; de Sales Marques C; Barros Ferreira Rodrigues AK; Del Vechio Koike B; Cavalcante de Queiroz A; Guimaraes TA; Freire de Souza CD; Alberto de Carvalho Fraga C
    Mol Cell Endocrinol; 2019 Aug; 493():110455. PubMed ID: 31145933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.