These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 30021106)

  • 1. Single Proteoliposome High-Content Analysis Reveals Differences in the Homo-Oligomerization of GPCRs.
    Walsh SM; Mathiasen S; Christensen SM; Fay JF; King C; Provasi D; Borrero E; Rasmussen SGF; Fung JJ; Filizola M; Hristova K; Kobilka B; Farrens DL; Stamou D
    Biophys J; 2018 Jul; 115(2):300-312. PubMed ID: 30021106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale high-content analysis using compositional heterogeneities of single proteoliposomes.
    Mathiasen S; Christensen SM; Fung JJ; Rasmussen SG; Fay JF; Jorgensen SK; Veshaguri S; Farrens DL; Kiskowski M; Kobilka B; Stamou D
    Nat Methods; 2014 Sep; 11(9):931-4. PubMed ID: 25086504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oligomerization of GPCRs involved in endocrine regulation.
    Kleinau G; Müller A; Biebermann H
    J Mol Endocrinol; 2016 Jul; 57(1):R59-80. PubMed ID: 27151573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revealing G-protein-coupled receptor oligomerization at the single-molecule level through a nanoscopic lens: methods, dynamics and biological function.
    Scarselli M; Annibale P; McCormick PJ; Kolachalam S; Aringhieri S; Radenovic A; Corsini GU; Maggio R
    FEBS J; 2016 Apr; 283(7):1197-217. PubMed ID: 26509747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quaternary structure of the yeast pheromone receptor Ste2 in living cells.
    Stoneman MR; Paprocki JD; Biener G; Yokoi K; Shevade A; Kuchin S; Raicu V
    Biochim Biophys Acta Biomembr; 2017 Sep; 1859(9 Pt A):1456-1464. PubMed ID: 27993568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current Techniques for Studying Oligomer Formations of G-Protein-Coupled Receptors Using Mammalian and Yeast Cells.
    Nakamura Y; Ishii J; Kondo A
    Curr Med Chem; 2016 May; 23(16):1638-56. PubMed ID: 27052183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-Resolved FRET-Based Assays to Characterize G Protein-Coupled Receptor Hetero-oligomer Pharmacology.
    Heuninck J; Hounsou C; Dupuis E; Trinquet E; Mouillac B; Pin JP; Bonnet D; Durroux T
    Methods Mol Biol; 2019; 1947():151-168. PubMed ID: 30969415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Allosteric inhibition of g-protein coupled receptor oligomerization: strategies and challenges for drug development.
    Hurevich M; Talhami A; Shalev DE; Gilon C
    Curr Top Med Chem; 2014; 14(15):1842-63. PubMed ID: 25175995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. G-protein coupled receptor oligomerization in neuroendocrine pathways.
    Kroeger KM; Pfleger KD; Eidne KA
    Front Neuroendocrinol; 2003 Dec; 24(4):254-78. PubMed ID: 14726257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Luminescence- and Fluorescence-Based Complementation Assays to Screen for GPCR Oligomerization: Current State of the Art.
    Wouters E; Vasudevan L; Crans RAJ; Saini DK; Stove CP
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31213021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane interactive alpha-helices in GPCRs as a novel drug target.
    Nemoto W; Toh H
    Curr Protein Pept Sci; 2006 Dec; 7(6):561-75. PubMed ID: 17168789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oligomerization of G protein-coupled receptors: biochemical and biophysical methods.
    Kaczor AA; Selent J
    Curr Med Chem; 2011; 18(30):4606-34. PubMed ID: 21864280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Dynamics of GPCR Oligomerization and Their Functional Consequences.
    Sleno R; Hébert TE
    Int Rev Cell Mol Biol; 2018; 338():141-171. PubMed ID: 29699691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescent protein complementation assays: new tools to study G protein-coupled receptor oligomerization and GPCR-mediated signaling.
    Vidi PA; Ejendal KF; Przybyla JA; Watts VJ
    Mol Cell Endocrinol; 2011 Jan; 331(2):185-93. PubMed ID: 20654687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quaternary structures of opsin in live cells revealed by FRET spectrometry.
    Mishra AK; Gragg M; Stoneman MR; Biener G; Oliver JA; Miszta P; Filipek S; Raicu V; Park PS
    Biochem J; 2016 Nov; 473(21):3819-3836. PubMed ID: 27623775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GPCRs and Signal Transducers: Interaction Stoichiometry.
    Gurevich VV; Gurevich EV
    Trends Pharmacol Sci; 2018 Jul; 39(7):672-684. PubMed ID: 29739625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GPCR homo-oligomerization.
    Milligan G; Ward RJ; Marsango S
    Curr Opin Cell Biol; 2019 Apr; 57():40-47. PubMed ID: 30453145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives.
    Ferré S; Casadó V; Devi LA; Filizola M; Jockers R; Lohse MJ; Milligan G; Pin JP; Guitart X
    Pharmacol Rev; 2014; 66(2):413-34. PubMed ID: 24515647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Past, present and future of vasopressin and oxytocin receptor oligomers, prototypical GPCR models to study dimerization processes.
    Cottet M; Albizu L; Perkovska S; Jean-Alphonse F; Rahmeh R; Orcel H; Méjean C; Granier S; Mendre C; Mouillac B; Durroux T
    Curr Opin Pharmacol; 2010 Feb; 10(1):59-66. PubMed ID: 19896898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring functional consequences of GPCR oligomerization requires a different lens.
    Bourque K; Jones-Tabah J; Devost D; Clarke PBS; Hébert TE
    Prog Mol Biol Transl Sci; 2020; 169():181-211. PubMed ID: 31952686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.