These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 30021299)
1. Structure and performance properties of environmentally-friendly biocomposites based on poly(ɛ-caprolactone) modified with copper slag and shale drill cuttings wastes. Hejna A; Piszcz-Karaś K; Filipowicz N; Cieśliński H; Namieśnik J; Marć M; Klein M; Formela K Sci Total Environ; 2018 Nov; 640-641():1320-1331. PubMed ID: 30021299 [TBL] [Abstract][Full Text] [Related]
2. Amorphized cellulose as filler in biocomposites based on poly(ɛ-caprolactone). Cocca M; Avolio R; Gentile G; Di Pace E; Errico ME; Avella M Carbohydr Polym; 2015 Mar; 118():170-82. PubMed ID: 25542123 [TBL] [Abstract][Full Text] [Related]
3. Compatibility of Sustainable Mater-Bi/poly(ε-caprolactone)/cellulose Biocomposites as a Function of Filler Modification. Hejna A; Barczewski M; Kosmela P; Mysiukiewicz O; Piasecki A; Tercjak A Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895795 [TBL] [Abstract][Full Text] [Related]
4. Investigating the Impact of Curing System on Structure-Property Relationship of Natural Rubber Modified with Brewery By-Product and Ground Tire Rubber. Zedler Ł; Colom X; Cañavate J; Saeb MR; T Haponiuk J; Formela K Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32138152 [TBL] [Abstract][Full Text] [Related]
13. Nano-porous thermally sintered nano silica as novel fillers for dental composites. Atai M; Pahlavan A; Moin N Dent Mater; 2012 Feb; 28(2):133-45. PubMed ID: 22137937 [TBL] [Abstract][Full Text] [Related]
14. From biowaste to bioresource: Effect of a lignocellulosic filler on the properties of poly(3-hydroxybutyrate). Angelini S; Cerruti P; Immirzi B; Santagata G; Scarinzi G; Malinconico M Int J Biol Macromol; 2014 Nov; 71():163-73. PubMed ID: 25086181 [TBL] [Abstract][Full Text] [Related]
15. Biocomposites of plasticized starch reinforced with cellulose crystallites from cottonseed linter. Lu Y; Weng L; Cao X Macromol Biosci; 2005 Nov; 5(11):1101-7. PubMed ID: 16245266 [TBL] [Abstract][Full Text] [Related]
16. Sustainable Biocomposites from Pyrolyzed Grass and Toughened Polypropylene: Structure-Property Relationships. Behazin E; Misra M; Mohanty AK ACS Omega; 2017 May; 2(5):2191-2199. PubMed ID: 31457570 [TBL] [Abstract][Full Text] [Related]
17. Preparation and properties of thermoplastic poly(caprolactone) composites containing high amount of esterified starch without plasticizer. Sun Y; Hu Q; Qian J; Li T; Ma P; Shi D; Dong W; Chen M Carbohydr Polym; 2016 Mar; 139():28-34. PubMed ID: 26794943 [TBL] [Abstract][Full Text] [Related]
18. Effect of diameter of poly(lactic acid) fiber on the physical properties of poly(ɛ-caprolactone). Ju D; Han L; Guo Z; Bian J; Li F; Chen S; Dong L Int J Biol Macromol; 2015 May; 76():49-57. PubMed ID: 25709010 [TBL] [Abstract][Full Text] [Related]
19. The impact of thermomechanical and chemical treatment of waste Brewers' spent grain and soil biodegradation of sustainable Mater-Bi-Based biocomposites. Hejna A; Barczewski M; Kosmela P; Mysiukiewicz O; Aniśko J; Sulima P; Andrzej Przyborowski J; Reza Saeb M Waste Manag; 2022 Dec; 154():260-271. PubMed ID: 36279594 [TBL] [Abstract][Full Text] [Related]
20. From food waste to eco-friendly functionalized polymer composites: Investigation of orange peels as active filler. Pagliarini E; Minichiello C; Sisti L; Totaro G; Baffoni L; Di Gioia D; Saccani A N Biotechnol; 2024 May; 80():37-45. PubMed ID: 38253287 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]