These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
334 related articles for article (PubMed ID: 30021574)
1. Heterologous production of levopimaric acid in Saccharomyces cerevisiae. Liu T; Zhang C; Lu W Microb Cell Fact; 2018 Jul; 17(1):114. PubMed ID: 30021574 [TBL] [Abstract][Full Text] [Related]
2. Heterologous biosynthesis and manipulation of crocetin in Saccharomyces cerevisiae. Chai F; Wang Y; Mei X; Yao M; Chen Y; Liu H; Xiao W; Yuan Y Microb Cell Fact; 2017 Mar; 16(1):54. PubMed ID: 28356104 [TBL] [Abstract][Full Text] [Related]
3. Metabolic Engineering and Adaptive Evolution for Efficient Production of l-Lactic Acid in Saccharomyces cerevisiae. Zhu P; Luo R; Li Y; Chen X Microbiol Spectr; 2022 Dec; 10(6):e0227722. PubMed ID: 36354322 [TBL] [Abstract][Full Text] [Related]
4. High-titer production of 13R-manoyl oxide in metabolically engineered Saccharomyces cerevisiae. Zhang C; Ju H; Lu CZ; Zhao F; Liu J; Guo X; Wu Y; Zhao GR; Lu W Microb Cell Fact; 2019 Apr; 18(1):73. PubMed ID: 31018856 [TBL] [Abstract][Full Text] [Related]
5. [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae]. Qu N; He XP; Guo XN; Liu N; Zhang BR Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):38-42. PubMed ID: 16579462 [TBL] [Abstract][Full Text] [Related]
6. Combinatorial metabolic engineering and process optimization enables highly efficient production of L-lactic acid by acid-tolerant Saccharomyces cerevisiae. Liu T; Sun L; Zhang C; Liu Y; Li J; Du G; Lv X; Liu L Bioresour Technol; 2023 Jul; 379():129023. PubMed ID: 37028528 [TBL] [Abstract][Full Text] [Related]
7. Improvement of d-Lactic Acid Production in Saccharomyces cerevisiae Under Acidic Conditions by Evolutionary and Rational Metabolic Engineering. Baek SH; Kwon EY; Bae SJ; Cho BR; Kim SY; Hahn JS Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731533 [TBL] [Abstract][Full Text] [Related]
8. Systematic Metabolic Engineering of Shi B; Ma T; Ye Z; Li X; Huang Y; Zhou Z; Ding Y; Deng Z; Liu T J Agric Food Chem; 2019 Oct; 67(40):11148-11157. PubMed ID: 31532654 [TBL] [Abstract][Full Text] [Related]
9. Optimization of a cytochrome P450 oxidation system for enhancing protopanaxadiol production in Saccharomyces cerevisiae. Zhao F; Bai P; Liu T; Li D; Zhang X; Lu W; Yuan Y Biotechnol Bioeng; 2016 Aug; 113(8):1787-95. PubMed ID: 26757342 [TBL] [Abstract][Full Text] [Related]
10. Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L-lactic acid. Lee JY; Kang CD; Lee SH; Park YK; Cho KM Biotechnol Bioeng; 2015 Apr; 112(4):751-8. PubMed ID: 25363674 [TBL] [Abstract][Full Text] [Related]
11. Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae. Baek SH; Kwon EY; Kim YH; Hahn JS Appl Microbiol Biotechnol; 2016 Mar; 100(6):2737-48. PubMed ID: 26596574 [TBL] [Abstract][Full Text] [Related]
12. Alpha-Terpineol production from an engineered Saccharomyces cerevisiae cell factory. Zhang C; Li M; Zhao GR; Lu W Microb Cell Fact; 2019 Sep; 18(1):160. PubMed ID: 31547812 [TBL] [Abstract][Full Text] [Related]
13. Efficient production of glycyrrhetinic acid in metabolically engineered Saccharomyces cerevisiae via an integrated strategy. Wang C; Su X; Sun M; Zhang M; Wu J; Xing J; Wang Y; Xue J; Liu X; Sun W; Chen S Microb Cell Fact; 2019 May; 18(1):95. PubMed ID: 31138208 [TBL] [Abstract][Full Text] [Related]
14. Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae. Oh EJ; Skerker JM; Kim SR; Wei N; Turner TL; Maurer MJ; Arkin AP; Jin YS Appl Environ Microbiol; 2016 Jun; 82(12):3631-3639. PubMed ID: 27084006 [TBL] [Abstract][Full Text] [Related]
15. Ergosterol production from molasses by genetically modified Saccharomyces cerevisiae. He X; Guo X; Liu N; Zhang B Appl Microbiol Biotechnol; 2007 May; 75(1):55-60. PubMed ID: 17225097 [TBL] [Abstract][Full Text] [Related]
16. Production of sesquiterpenoid zerumbone from metabolic engineered Saccharomyces cerevisiae. Zhang C; Liu J; Zhao F; Lu C; Zhao GR; Lu W Metab Eng; 2018 Sep; 49():28-35. PubMed ID: 30031850 [TBL] [Abstract][Full Text] [Related]
17. Efficient Production of Glucaric Acid by Engineered Saccharomyces cerevisiae. Zhao Y; Zuo F; Shu Q; Yang X; Deng Y Appl Environ Microbiol; 2023 Jun; 89(6):e0053523. PubMed ID: 37212714 [TBL] [Abstract][Full Text] [Related]
18. Heterologous Biosynthesis of Kauralexin A1 in Chen R; Wang J; Xu J; Nie S; Chen C; Li Y; Li Y; He J; Li W; Wen M; Qiao J J Agric Food Chem; 2024 Apr; 72(13):7308-7317. PubMed ID: 38529564 [TBL] [Abstract][Full Text] [Related]
19. Biosensor-Enabled Directed Evolution to Improve Muconic Acid Production in Saccharomyces cerevisiae. Leavitt JM; Wagner JM; Tu CC; Tong A; Liu Y; Alper HS Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28296355 [TBL] [Abstract][Full Text] [Related]
20. Metabolic engineering of Saccharomyces cerevisiae for production of germacrene A, a precursor of beta-elemene. Hu Y; Zhou YJ; Bao J; Huang L; Nielsen J; Krivoruchko A J Ind Microbiol Biotechnol; 2017 Jul; 44(7):1065-1072. PubMed ID: 28547322 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]