BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 30021880)

  • 1. Uptake of l-Alanine and Its Distinct Roles in the Bioenergetics of Trypanosoma cruzi.
    Girard RMBM; Crispim M; Alencar MB; Silber AM
    mSphere; 2018 Jul; 3(4):. PubMed ID: 30021880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The active transport of histidine and its role in ATP production in Trypanosoma cruzi.
    Barisón MJ; Damasceno FS; Mantilla BS; Silber AM
    J Bioenerg Biomembr; 2016 Aug; 48(4):437-49. PubMed ID: 27222029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Uptake of GABA in Trypanosoma cruzi.
    Galvez Rojas RL; Ahn IY; Suárez Mantilla B; Sant'Anna C; Pral EM; Silber AM
    J Eukaryot Microbiol; 2015; 62(5):629-36. PubMed ID: 25851259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical Characterization of Branched Chain Amino Acids Uptake in Trypanosoma cruzi.
    Manchola NC; Rapado LN; Barisón MJ; Silber AM
    J Eukaryot Microbiol; 2016 May; 63(3):299-308. PubMed ID: 26496801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatty acid oxidation participates in resistance to nutrient-depleted environments in the insect stages of Trypanosoma cruzi.
    Souza ROO; Damasceno FS; Marsiccobetre S; Biran M; Murata G; Curi R; Bringaud F; Silber AM
    PLoS Pathog; 2021 Apr; 17(4):e1009495. PubMed ID: 33819309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical characterization of the glutamate transport in Trypanosoma cruzi.
    Silber AM; Rojas RL; Urias U; Colli W; Alves MJ
    Int J Parasitol; 2006 Feb; 36(2):157-63. PubMed ID: 16373069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon-13 nuclear magnetic resonance analysis of [1-13C]glucose metabolism in Trypanosoma cruzi. Evidence of the presence of two alanine pools and of two CO2 fixation reactions.
    Frydman B; de los Santos C; Cannata JJ; Cazzulo JJ
    Eur J Biochem; 1990 Sep; 192(2):363-8. PubMed ID: 2120054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heme modulates Trypanosoma cruzi bioenergetics inducing mitochondrial ROS production.
    Nogueira NP; Saraiva FMS; Oliveira MP; Mendonça APM; Inacio JDF; Almeida-Amaral EE; Menna-Barreto RF; Laranja GAT; Torres EJL; Oliveira MF; Paes MC
    Free Radic Biol Med; 2017 Jul; 108():183-191. PubMed ID: 28363600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intermediate metabolism in Trypanosoma cruzi.
    Cazzulo JJ
    J Bioenerg Biomembr; 1994 Apr; 26(2):157-65. PubMed ID: 8056782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioenergetic profiling of Trypanosoma cruzi life stages using Seahorse extracellular flux technology.
    Shah-Simpson S; Pereira CF; Dumoulin PC; Caradonna KL; Burleigh BA
    Mol Biochem Parasitol; 2016 Aug; 208(2):91-5. PubMed ID: 27392747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The limitations of paradigms: studies on the intermediary metabolism of Trypanosoma cruzi.
    Urbina JA; Machin I; Jurado L
    Biol Res; 1993; 26(1-2):81-8. PubMed ID: 7670550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial Pyruvate Carrier Subunits Are Essential for Pyruvate-Driven Respiration, Infectivity, and Intracellular Replication of Trypanosoma cruzi.
    Negreiros RS; Lander N; Chiurillo MA; Vercesi AE; Docampo R
    mBio; 2021 Apr; 12(2):. PubMed ID: 33824204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of host central carbon metabolism and in situ glucose uptake by intracellular Trypanosoma cruzi amastigotes.
    Shah-Simpson S; Lentini G; Dumoulin PC; Burleigh BA
    PLoS Pathog; 2017 Nov; 13(11):e1006747. PubMed ID: 29176805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cationic amino acid uptake constitutes a metabolic regulation mechanism and occurs in the flagellar pocket of Trypanosoma cruzi.
    Miranda MR; Sayé M; Bouvier LA; Cámara Mde L; Montserrat J; Pereira CA
    PLoS One; 2012; 7(2):e32760. PubMed ID: 22393446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting calcium homeostasis as the therapy of Chagas' disease and leishmaniasis - a review.
    Benaim B; Garcia CR
    Trop Biomed; 2011 Dec; 28(3):471-81. PubMed ID: 22433874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nutrient availability regulates proline/alanine transporters in Trypanosoma brucei.
    Haindrich AC; Ernst V; Naguleswaran A; Oliveres QF; Roditi I; Rentsch D
    J Biol Chem; 2021; 296():100566. PubMed ID: 33745971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Actions of a proline analogue, L-thiazolidine-4-carboxylic acid (T4C), on Trypanosoma cruzi.
    Magdaleno A; Ahn IY; Paes LS; Silber AM
    PLoS One; 2009; 4(2):e4534. PubMed ID: 19229347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium-sensitive pyruvate dehydrogenase phosphatase is required for energy metabolism, growth, differentiation, and infectivity of
    Lander N; Chiurillo MA; Bertolini MS; Storey M; Vercesi AE; Docampo R
    J Biol Chem; 2018 Nov; 293(45):17402-17417. PubMed ID: 30232153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Trypanosoma cruzi Protein TcHTE Is Critical for Heme Uptake.
    Merli ML; Pagura L; Hernández J; Barisón MJ; Pral EM; Silber AM; Cricco JA
    PLoS Negl Trop Dis; 2016 Jan; 10(1):e0004359. PubMed ID: 26752206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proline dehydrogenase regulates redox state and respiratory metabolism in Trypanosoma cruzi.
    Paes LS; Suárez Mantilla B; Zimbres FM; Pral EM; Diogo de Melo P; Tahara EB; Kowaltowski AJ; Elias MC; Silber AM
    PLoS One; 2013; 8(7):e69419. PubMed ID: 23894476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.