These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30021980)

  • 1. Coalition Formation Based Compressive Sensing in Wireless Sensor Networks.
    Masoum A; Meratnia N; Havinga PJM
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30021980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive Compressive Sensing and Data Recovery for Periodical Monitoring Wireless Sensor Networks.
    Chen J; Jia J; Deng Y; Wang X; Aghvami AH
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30304830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Data-Gathering Scheme with Joint Routing and Compressive Sensing Based on Modified Diffusion Wavelets in Wireless Sensor Networks.
    Gu X; Zhou X; Sun Y
    Sensors (Basel); 2018 Feb; 18(3):. PubMed ID: 29495630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial-Temporal Data Collection with Compressive Sensing in Mobile Sensor Networks.
    Zheng H; Li J; Feng X; Guo W; Chen Z; Xiong N
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29117152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Online Dictionary Learning-Based Compressive Data Gathering Algorithm in Wireless Sensor Networks.
    Wang D; Wan J; Chen J; Zhang Q
    Sensors (Basel); 2016 Sep; 16(10):. PubMed ID: 27669250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wireless Sensor Array Network DoA Estimation from Compressed Array Data via Joint Sparse Representation.
    Yu K; Yin M; Luo JA; Wang Y; Bao M; Hu YH; Wang Z
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27223287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CS²-Collector: A New Approach for Data Collection in Wireless Sensor Networks Based on Two-Dimensional Compressive Sensing.
    Wang Y; Yang Z; Zhang J; Li F; Wen H; Shen Y
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27548180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Data Gathering Methods in Wireless Sensor Networks Using GBTR Matrix Completion.
    Wang D; Wan J; Nie Z; Zhang Q; Fei Z
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27657085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sparse Recovery Optimization in Wireless Sensor Networks with a Sub-Nyquist Sampling Rate.
    Brunelli D; Caione C
    Sensors (Basel); 2015 Jul; 15(7):16654-73. PubMed ID: 26184203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distributed Compressive Sensing for Wireless Signal Transmission in Structural Health Monitoring: An Adaptive Hierarchical Bayesian Model-Based Approach.
    Wang Z; Sun S; Li Y; Yue Z; Ding Y
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Subspace Approach to Sparse Sampling based Data Gathering in Wireless Sensor Networks.
    He J; Zhang X; Zhou Y; Maibvisira M
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32059454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Practical Data-Gathering Algorithm for Lossy Wireless Sensor Networks Employing Distributed Data Storage and Compressive Sensing.
    Zhang C; Li O; Liu G; Li M
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30250004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Adaptive Data Gathering Scheme for Multi-Hop Wireless Sensor Networks Based on Compressed Sensing and Network Coding.
    Yin J; Yang Y; Wang L
    Sensors (Basel); 2016 Apr; 16(4):462. PubMed ID: 27043574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Type of Low-Latency Data Gathering Method with Multi-Sink for Sensor Networks.
    Sha C; Qiu JM; Li SY; Qiang MY; Wang RC
    Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27338401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rate-Distortion Performance and Incremental Transmission Scheme of Compressive Sensed Measurements in Wireless Sensor Networks.
    Da Rocha Henriques F; Lovisolo L; Barros da Silva EA
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30641911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distributed Similarity based Clustering and Compressed Forwarding for wireless sensor networks.
    Arunraja M; Malathi V; Sakthivel E
    ISA Trans; 2015 Nov; 59():180-92. PubMed ID: 26343165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-Energy Data Collection in Wireless Sensor Networks Based on Matrix Completion.
    Xu Y; Sun G; Geng T; He J
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30813416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data Aggregation Based on Overlapping Rate of Sensing Area in Wireless Sensor Networks.
    Tang X; Xie H; Chen W; Niu J; Wang S
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28661418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Energy-Efficient Spectrum-Aware Reinforcement Learning-Based Clustering Algorithm for Cognitive Radio Sensor Networks.
    Mustapha I; Mohd Ali B; Rasid MF; Sali A; Mohamad H
    Sensors (Basel); 2015 Aug; 15(8):19783-818. PubMed ID: 26287191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A New Sparse Adaptive Channel Estimation Method Based on Compressive Sensing for FBMC/OQAM Transmission Network.
    Wang H; Du W; Xu L
    Sensors (Basel); 2016 Jun; 16(7):. PubMed ID: 27347967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.