These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 30022014)
21. V2X Communication between Connected and Automated Vehicles (CAVs) and Unmanned Aerial Vehicles (UAVs). Kavas-Torris O; Gelbal SY; Cantas MR; Aksun Guvenc B; Guvenc L Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433536 [TBL] [Abstract][Full Text] [Related]
22. Heterogeneous mission planning for a single unmanned aerial vehicle (UAV) with attention-based deep reinforcement learning. Jung M; Oh H PeerJ Comput Sci; 2022; 8():e1119. PubMed ID: 36426245 [TBL] [Abstract][Full Text] [Related]
23. Effects of Touch, Voice, and Multimodal Input, and Task Load on Multiple-UAV Monitoring Performance During Simulated Manned-Unmanned Teaming in a Military Helicopter. Levulis SJ; DeLucia PR; Kim SY Hum Factors; 2018 Dec; 60(8):1117-1129. PubMed ID: 30063411 [TBL] [Abstract][Full Text] [Related]
24. Monocular Vision System for Fixed Altitude Flight of Unmanned Aerial Vehicles. Huang KL; Chiu CC; Chiu SY; Teng YJ; Hao SS Sensors (Basel); 2015 Jul; 15(7):16848-65. PubMed ID: 26184213 [TBL] [Abstract][Full Text] [Related]
25. A meta-analysis of human-system interfaces in unmanned aerial vehicle (UAV) swarm management. Hocraffer A; Nam CS Appl Ergon; 2017 Jan; 58():66-80. PubMed ID: 27633199 [TBL] [Abstract][Full Text] [Related]
26. Mission Aware Motion Planning (MAP) Framework With Physical and Geographical Constraints for a Swarm of Mobile Stations. Harikumar K; Senthilnath J; Sundaram S IEEE Trans Cybern; 2020 Mar; 50(3):1209-1219. PubMed ID: 30802879 [TBL] [Abstract][Full Text] [Related]
27. An Integrated Mission Planning Framework for Sensor Allocation and Path Planning of Heterogeneous Multi-UAV Systems. Zheng H; Yuan J Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34065325 [TBL] [Abstract][Full Text] [Related]
28. Balancing search and target response in cooperative unmanned aerial vehicle (UAV) teams. Jin Y; Liao Y; Minai AA; Polycarpou MM IEEE Trans Syst Man Cybern B Cybern; 2006 Jun; 36(3):571-87. PubMed ID: 16761811 [TBL] [Abstract][Full Text] [Related]
29. Multi-objective four-dimensional vehicle motion planning in large dynamic environments. Wu PP; Campbell D; Merz T IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):621-34. PubMed ID: 20851795 [TBL] [Abstract][Full Text] [Related]
30. Effect of automation transparency in the management of multiple unmanned vehicles. Bhaskara A; Duong L; Brooks J; Li R; McInerney R; Skinner M; Pongracic H; Loft S Appl Ergon; 2021 Jan; 90():103243. PubMed ID: 32919121 [TBL] [Abstract][Full Text] [Related]
31. Hierarchical Mission Planning with a GA-Optimizer for Unmanned High Altitude Pseudo-Satellites. Kiam JJ; Besada-Portas E; Schulte A Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33652592 [TBL] [Abstract][Full Text] [Related]
34. A Framework for Planning and Execution of Drone Swarm Missions in a Hostile Environment. Siemiatkowska B; Stecz W Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34204272 [TBL] [Abstract][Full Text] [Related]
35. Coordination Between Unmanned Aerial and Ground Vehicles: A Taxonomy and Optimization Perspective. Chen J; Zhang X; Xin B; Fang H IEEE Trans Cybern; 2016 Apr; 46(4):959-72. PubMed ID: 25898328 [TBL] [Abstract][Full Text] [Related]
36. Use of the RoboFlag synthetic task environment to investigate workload and stress responses in UAV operation. Guznov S; Matthews G; Funke G; Dukes A Behav Res Methods; 2011 Sep; 43(3):771-80. PubMed ID: 21487900 [TBL] [Abstract][Full Text] [Related]
37. Towards Fully Autonomous UAVs: A Survey. Elmokadem T; Savkin AV Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577430 [TBL] [Abstract][Full Text] [Related]
38. Robust Satisficing Decision Making for Unmanned Aerial Vehicle Complex Missions under Severe Uncertainty. Ji X; Niu Y; Shen L PLoS One; 2016; 11(11):e0166448. PubMed ID: 27835670 [TBL] [Abstract][Full Text] [Related]