BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 30022210)

  • 21. De novo design of a model peptide sequence to examine the effects of single amino acid substitutions in the hydrophobic core on both stability and oligomerization state of coiled-coils.
    Wagschal K; Tripet B; Hodges RS
    J Mol Biol; 1999 Jan; 285(2):785-803. PubMed ID: 9878444
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent advances in designed coiled coils and helical bundles with inorganic prosthetic groups-from structural to functional applications.
    Peacock AF
    Curr Opin Chem Biol; 2016 Apr; 31():160-5. PubMed ID: 27031927
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Construction of a pH-responsive artificial membrane fusion system by using designed coiled-coil polypeptides.
    Kashiwada A; Matsuda K; Mizuno T; Tanaka T
    Chemistry; 2008; 14(24):7343-50. PubMed ID: 18626873
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of the buried glutamate in the alpha-helical coiled coil domain of the macrophage scavenger receptor.
    Suzuki K; Yamada T; Tanaka T
    Biochemistry; 1999 Feb; 38(6):1751-6. PubMed ID: 10026254
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of protonation and metal chelation preferences in defining the properties of mercury-binding coiled coils.
    Dieckmann GR; McRorie DK; Lear JD; Sharp KA; DeGrado WF; Pecoraro VL
    J Mol Biol; 1998 Jul; 280(5):897-912. PubMed ID: 9671558
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metal-binding properties and structural characterization of a self-assembled coiled coil: formation of a polynuclear Cd-thiolate cluster.
    Zaytsev DV; Morozov VA; Fan J; Zhu X; Mukherjee M; Ni S; Kennedy MA; Ogawa MY
    J Inorg Biochem; 2013 Feb; 119():1-9. PubMed ID: 23160144
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The C-terminal domain of the Uup protein is a DNA-binding coiled coil motif.
    Carlier L; Haase AS; Burgos Zepeda MY; Dassa E; Lequin O
    J Struct Biol; 2012 Dec; 180(3):577-84. PubMed ID: 22995754
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automated de novo phasing and model building of coiled-coil proteins.
    Rämisch S; Lizatović R; André I
    Acta Crystallogr D Biol Crystallogr; 2015 Mar; 71(Pt 3):606-14. PubMed ID: 25760609
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Creation of a binuclear purple copper site within a de novo coiled-coil protein.
    Shiga D; Funahashi Y; Masuda H; Kikuchi A; Noda M; Uchiyama S; Fukui K; Kanaori K; Tajima K; Takano Y; Nakamura H; Kamei M; Tanaka T
    Biochemistry; 2012 Oct; 51(40):7901-7. PubMed ID: 22989113
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Core residue replacements cause coiled-coil orientation switching in vitro and in vivo: structure-function correlations for osmosensory transporter ProP.
    Tsatskis Y; Kwok SC; Becker E; Gill C; Smith MN; Keates RA; Hodges RS; Wood JM
    Biochemistry; 2008 Jan; 47(1):60-72. PubMed ID: 18076193
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The use of ion mobility mass spectrometry to assist protein design: a case study on zinc finger fold versus coiled coil interactions.
    Berezovskaya Y; Porrini M; Nortcliffe C; Barran PE
    Analyst; 2015 Apr; 140(8):2847-56. PubMed ID: 25734188
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinking the coiled coil--negatively charged residues at the coiled-coil interface.
    Straussman R; Ben-Ya'acov A; Woolfson DN; Ravid S
    J Mol Biol; 2007 Mar; 366(4):1232-42. PubMed ID: 17207815
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The two-stranded alpha-helical coiled-coil is an ideal model for studying protein stability and subunit interactions.
    Zhou NE; Zhu BY; Kay CM; Hodges RS
    Biopolymers; 1992 Apr; 32(4):419-26. PubMed ID: 1623137
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lanthanide probes for a phosphodiester-cleaving, lead-dependent, DNAzyme.
    Geyer CR; Sen D
    J Mol Biol; 1998 Jan; 275(3):483-9. PubMed ID: 9466925
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The design of coiled-coil structures and assemblies.
    Woolfson DN
    Adv Protein Chem; 2005; 70():79-112. PubMed ID: 15837514
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design of thiolate rich metal binding sites within a peptidic framework.
    Łuczkowski M; Stachura M; Schirf V; Demeler B; Hemmingsen L; Pecoraro VL
    Inorg Chem; 2008 Dec; 47(23):10875-88. PubMed ID: 18959366
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hg(II) binding to a weakly associated coiled coil nucleates an encoded metalloprotein fold: a kinetic analysis.
    Farrer BT; Pecoraro VL
    Proc Natl Acad Sci U S A; 2003 Apr; 100(7):3760-5. PubMed ID: 12552128
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Employing Lewis Acidity to Generate Bimetallic Lanthanide Complexes.
    Klamm BE; Albrecht-Schmitt TE; Baumbach RE; Billow BS; White FD; Kozimor SA; Scott BL; Tondreau AM
    Inorg Chem; 2020 Jul; 59(13):8642-8646. PubMed ID: 32623892
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Are trigger sequences essential in the folding of two-stranded alpha-helical coiled-coils?
    Lee DL; Lavigne P; Hodges RS
    J Mol Biol; 2001 Feb; 306(3):539-53. PubMed ID: 11178912
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lanthanide bimetallic helicates for in vitro imaging and sensing.
    Bünzli JC; Chauvin AS; Vandevyver CD; Bo S; Comby S
    Ann N Y Acad Sci; 2008; 1130():97-105. PubMed ID: 18596338
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.